Dissertation submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences Put forward by Master of Science Fabian Heiße Born in Zschopau Oral examination: October 16th, 2019 High-precision measurement of the proton’s atomic mass First referee: Priv. Doz. Dr. Wolfgang Quint Second referee: Prof. Dr. Selim Jochim Groß sind die Werke des HERRN; wer sie erforscht, der hat Freude daran. Die Bibel, Buch der Psalmen, Kapitel 111 Vers 2. Hochpräzise Messung der atomaren Masse des Protons Zusammenfassung - Im Rahmen dieser Doktorarbeit wurden große Teile des neuen Penningfallen-Experimentes LIONTRAP (Light-Ion Trap) aufgebaut, das gesamte Experiment erstmalig in Betrieb genommen und vollständig charak- terisiert. Weiterhin wurden die ersten beiden Messkampagnen zur Bestimmung der atomaren Masse des Protons und des Sauerstoffatoms durchgeführt. Das LIONTRAP Experiment ist speziell für die Massenbestimmung von leich- ten Ionen optimiert. Dabei wird die Zyklotronfrequenz eines hochgeladenen Kohlenstoffions mit der des zu messenden Ions verglichen, um über dieses Zyk- lotronfrequenzverhältnis die atomare Masse des Ions zu extrahieren. Dafür wurde in LIONTRAP die harmonischste zylindrische Penningfalle realisiert, welche bisher in der Literatur beschrieben wurde. In der ersten Messkampagne wurde die atomare Masse des Protons mit einer bisher unerreichten relativen Genauigkeit von 3 × 10−11 bestimmt. Der neue Messwert ist nicht nur einen Faktor drei genauer als der zum Zeitpunkt der Messung gültige Literaturwert, sondern weist auch eine Diskrepanz von drei Standardabweichungen dazu auf. Zusätzlich wurde auch noch der zweitgenauste Wert für die Sauerstoffmasse bestimmt, welcher mit dem Literaturwert über- einstimmt. Darüber hinaus wurde in einer weiteren Messkampagne ebenfalls der größte systematische Effekt der Protonmassenmessung, der Bildladungseffekt, genau vermessen. Die erreichte relative Genauigkeit von 5% entspricht dabei der zweit genausten Messung dieses Effekts überhaupt. Zusätzlich stimmt das gemessene Ergebnis mit Simulationsvorhersagen überein. High-precision measurement of the proton’s atomic mass Abstract - In the course of this thesis major parts of the new Penning trap experiment LIONTRAP (Light-Ion Trap) have been built up, the whole ap- paratus has been commissioned and characterized. This enabled the first two measurement campaigns, including the measurements of the proton’s and oxy- gen’s atomic masses. The LIONTRAP experiment is dedicated to high-precision mass measurements of light ions. The measurement principle is based on the cyclotron frequency comparison of a carbon ion to the one of a light ion to determine its atomic mass. Therefore, the most harmonic cylindrical Penning trap described in the literature so far has been realized. In the first measurement campaign, the proton’s atomic mass has been deter- mined with an unrivaled relative precision of 3 × 10−11. This result is a factor of three more precise compared to the literature value at this time, revealing a more than three standard deviation to it. Additionally, the oxygen’s atomic mass has been measured with the second best precision, in agreement with the literature value. During the second measurement campaign the largest system- atic effect of the proton mass measurement, the image charge shift, has been analyzed. The achieved relative uncertainty of 5% is the second most precise measurement reported in literature so far. Moreover, the measured result is in very good accordance with the result predicted by dedicated simulations. Contents 1 Introduction 5 1.1 Contentofthisthesis ............................. 5 1.2 Historical overview of proton mass measurements . 5 1.3 Motivation for the LIONTRAP experiment . 11 2 Measurement fundamentals 17 2.1 Penning-trap basics . 17 2.2 Cyclotron frequency ratio (RCF) measurement . 20 2.3 Image charge shift . 23 3 Publications 27 3.1 High-precision measurement of the proton’s atomic mass . 28 3.2 High-precision mass spectrometer for light ions . 35 3.3 Image charge shift in high-precision Penning traps . 57 4 Discussion 75 4.1 Statistical uncertainty . 76 4.2 Improvingthestatisticaluncertainty. 79 4.3 Simultaneous RCF measurement scheme for non-doublets . 81 4.4 Systematicuncertainties. 83 4.5 Conclusion . 84 5 Summary 87 Bibliography 91 1 List of Figures 1.1 Overviewoftherelativeuncertainty . 6 1.2 The puzzle of light ion masses . 12 1.3 Proton-to-electron mass ratios . 13 1.4 Entirebetadecayspectrumoftritium . 15 2.1 Comparison of a hyperbolically shaped Penning trap . 18 2.2 Trajectory of a stored particle . 19 2.3 Sectional view of the trap tower . 23 2.4 Schematic view on the precision trap . 24 4.1 Timeschemeofthemeasurementcycle . 76 4.2 Allan deviation . 78 4.3 Principle of the simultaneous measurement scheme . 81 4.4 Offline measured magnetic field . 84 List of Tables 1.1 Inconsistency of light ion masses . 11 2.1 Typical eigenfrequencies of a proton and a carbon ion . 18 2.2 Overview of the most precise directly measured atomic masses . 21 2.3 Cyclotron frequency ratios measured . 22 4.1 Overviewoftheleadinguncertainties . 75 3 1 Introduction 1.1 Content of this thesis One universal and characteristic property of every atomic particle is its rest mass1. Masses play a significant role in a lot of areas in our daily lives. Consequently, mass measurements have also been an essential concept in natural sciences right from the early beginning. The masses of particles are important input parameters for theories which describe the fundamental laws of nature. Within the current Standard Model (SM) of particle physics, rest masses are not precisely enough predictable and need to be experimentally measured. On the other hand masses are essential input parameters to test various theories in physics. Furthermore, the predictions of the SM are based on dimensionless constants. Therefore, mass ratios are always required. In the course of this thesis the new high-precision mass spectrometer LIONTRAP (Light-Ion Trap) has been set up and is presented in detail. This spectrometer enabled us to do the most precise measurement of the proton’s atomic mass to date; it has been a factor of three more precise compared to the literature value at this time. In this case the mass of a proton has been compared to the reference mass of a carbon ion. The thesis starts with an overview of the published proton mass measurements over the last two hundred years, see 1.2. This is followed by the motivation for the LIONTRAP experiment. In chapter 2 the experimental background, the measure- ment principle as well as an introduction of the image charge effect are presented. The full articles are presented in chapter 3. Chapter 4 discusses the achieved results. In chapter 5 this cumulative thesis is summarized. 1.2 Historical overview of proton mass measurements In the following chapter I will give a brief overview of the increasing precision of measurements of the proton’s mass over the last two centuries, including the major milestones and involved groups. It starts with a relative uncertainty of 10−2 in 1814 and reaches uncertainties of 10−11 nowadays, see Fig. 1.1. The combination of a new mass spectrometer and higher precision mass mea- surements is an always recurring principle in the history of mass metrology. On 1 In the course of this thesis the term mass always refers to rest mass. 5 6 Chapter 1. Introduction 1800 1825 1850 1875 1900 1925 1950 1975 2000 2025 -2 [1,3] -2 10 [1,6] 10 [1,2] [9] [14,15] -3 [1,4,5] [1,7] -3 10 [1,8] [12,13] 10 [1,10] [1,11] [16] 10-4 [17,18] 10-4 p [19] [20] m -5 [23] -5 10 [25] [24] 10 [21] [26] [30] -6 [33] -6 10 [36] 10 [22] [38] -7 [31] -7 10 [27] [28] [32] 10 Gravimetric stoichiometry [37] [35] 10-8 Single focusing [29] [34] 10-8 [39] Double focusing [40] -9 [48] -9 Relativeprecision of [41,42,43] [49] 10 Mass synchrometer [45] 10 [50] [46,47] -10 Penning trap [51] -10 10 [44] 10 This work [52,53] 10-11 10-11 1800 1825 1850 1875 1900 1925 1950 1975 2000 2025 Year of publication Figure 1.1: Overview of the relative uncertainty for the measurement of the atomic mass of hydrogen, respectively the proton, over the last 200 years. At the begin- ning the mass was measured using chemical methods [1]. The most important re- searchers who contributed to the hydrogen mass were Wollaston [2], Berzelius [3], Thomson [4, 5], Dumas [6, 7], Regnault [8] and Richards [9]. The three most precise measurements using chemical methods were conducted by Erdmann [10], Thomsen [11] and Morley [12, 13]. For the first time the mass of hydrogen was measured with a single-focused mass spectrograph by Aston in 1920 [14, 15]. Later he built two improved spectrometers with an enhanced precision [16–18]. Another measurement with a single focused mass spectrometer has been carried out by Bainbridge [19]. From 1936 the application of double-focusing mass spectrom- eters led to more precise results. At the beginning, measurements with such a device were carried out by the group of Mattauch [20–22] and the group of Bain- bridge [23, 24]. Later the groups of Nier [25–29], Ogata [30–32], Ewald [33], More- land [34, 35] as well as Demirkhanov [36] used similar spectrometers. The next major improvement in precision was based on the application of mass synchrome- ters by Smith and Christman [37–39]. The invention of Penning traps lead to yet another enhancement by the groups of Van Dyck Jr. [40–44], Pritchard [45–47] and Schuch [48–51]. The most recent measurement was conducted in the course of this thesis with a precision of 3 × 10−11 [52, 53]. On average, every three years a new measurement has been conducted and the precision of the proton mass increases on average by one order of magnitude every 13 years.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages74 Page
-
File Size-