AN EXPERIMENTAL INVESTIGATION INTO CHEMICAL ADDITIVE EFFECTS ON IGNITION DELAY OF METH.4NE INJECTED INTO AIR Brad Bretecher A thesis submitted in conformity with the requirernents for the degree of Master of Applied Science Graduate Department of Mechanicd and Industrial Engineering University of Toronto O Copyright by Brad Bretecher. 2000 National Library Bibliothèque nationale IM .,,ad, du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395. rue Wellington OttawaON K1AON4 Ottawa ON KIA ON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or seil reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la fome de rnicrofiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts from it Ni la thèse ni des extraits substantiels may be printed or othemise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. An Experimental Investigation into Chernical Additive Effecu on Ignition Delay of Methane Injected into Air M. A. Sc., 2000 Brad Bretecher Department of Mechanical and Industrial Engineering University of Toronto Abstract Experiments were performed to investigate if possible synergy exists between two additives introduced to methane that would result in a shorter ignition delay than that for natural gas or methane containing only one additive. Testing was conducted in both a compression- ignition engine and a combustion bomb that afford optical access into the combustion chamber. Initial engine tests showed the importance of minimizing the injector sac volume of injectors for gaseous fuels. In combustion bomb tests with no power supplied to the glowplug, the methane mixtures reduced the ignition delay value by a factor of three compared to natural gas. Even with the additives. however, the ignition delay times achieved under the conditions tested are too long for practical use in an engine (C 2 rns). For the two lower glowplug temperatures used (1350 and 1375 K), practical ignition delays cm only be achieved at the highest intake system pressure tested. At the highest glowplug temperature, additives in the methane can provide significant reductions (20-308) in injection delay times. The substantial sensitivity to operating conditions displayed by the results is indicative of the underlying complexity of the processes uivolved. Additional investigation will be required to fully understand the ignition processes. Acknowledgements I would like to thank Professor Wallace for providing me with a guidance and lrarning atmosphere 1 will forever appreciate. Besides teaching me a lot. Hannu Jaiiskelzinen and Paul Salanki serve as great role models and friends. Richard Ancimer and Haifeng Liu were also very iieipful ana patient when asked countless questions. Appreciation is expressed to al1 of the machinists at UTMIE who taught me more about design and manufactunng rhan an entire undergraduate degree did. I would like to thank June. Rachelle, Vito, and all of my friends in Toronto and Winnipeg for brightening my life. Most importantly. 1 would like CO thmk my parents. Ed and Stella, and my sister. Rhonda, who 1 love very much and can always count on for support. ..- III Table of Contents Abstract Acknowledgernents Table of Contents 1v List of Tables vii List of Figures X List of Appendices xii Nomenclature xiii 1. Introduction 1 1.1 Natural Gas Use in intemal Combustion Engines 1 1.2 Thesis Objective 3 2. Theory and Past Research 4 2.1 Combustion Phases in a Compression4gnition Engine 4 2.2 Factors Affecting Ignition Delay 7 2.2.1 hcylinder Temperature and Pressure 7 2.2.2 Engine Operating Parameters 9 2.2.3 Fuel Composition 11 2.3 Crtane Improvement of Natural Gas 13 2.3.1 Dimethyi Ether 17 2.3.2 Nitromethane 20 3. Experimental Apparatus 22 3.1 Optical Engine 22 3.2 Combustion Bomb 3.3 Fueling Systern 3.3.1 Fuel Mixtures 3.3.2 Fuel Injector 3.3.3 Fuel System Apparatus 3.4 lntake Air Heating 3.5 Combustion Chamber Pressure Measurement 3 -6 Data Acquisition 3 6.1 Bornb Combustion hdges 4. Test Procedures 4.1 Lister-Ricardo Optical Engine 4.1.1 Operating Procedure 4.1.2 Analysis of Optical Engine Data 4.2 Combustion Bomb 4.2.1 Operating Procedure 4.2.2 Analysis of Bomb Data 5. Discussion of Results 5.1 Testing in the Lister-Ricardo Opticai Engine 5.2 Combustion Bomb Experiments 5.2.1 Tesùng without a Glowplug 5.2.2 Combustion Images of Glowplug-Assisted Ignition 5.2.3 Testing with a Glowplug Temperature of 1400 K 5.2.4 Testing with a Glowplug Temperature of 1350 K 52.5 Testing with a Glowpluj Temperature of 1375 K 6, Conclusions and Recommendations 6.1 Optical Engine 6.2 Combustion Bomb References Appendices List of Tables Table 2.1: Properties of Dimethyl Ether (DME) and Diesel-fuel Table 3.1 : Optical Engine Specifications Table 3.2: Fuel Mixture Matrix Table 3.3: Composition of Natural Gas Used for Testing Table 4.1: Operating Conditions for Optical Engine Table 4.2: Combustion Bomb Test Conditions Table 5.1: Latest Start of Injection BTDC for which Ignition Occurs [CADI. intake temp.=340°C Table 5.2: Average Bomb Openting Temperatures Table 5.3: Bomb Operating Temperatures, lntake Boost Pressure=O psi Table 5.4: Bomb Operating Temperatures, Intake Boost Pressure=lO psi Table 5.5: Bomb Operating Temperatures, Intûke Boost Pressure=20 psi Table 5.6: Bomb Operating Temperatures, Intake Boost Pressure=30 psi Table 5.7: Absolute Intake Pressures [kPa] Table A. 1: Cdibration Data for Glowplug A Table A.2: Cdibration Data for Glowplug B Table A.3: Cdibration Data for Washer Load Ce11 Table C. 1: Ignition Delay, no glowplug, nat. gas, int. P=20 Table C.2: Ignition Delay, no glowplug, nar. gas, int. P=25 Table C.3: Ignition Delay, no gIowpIug, nat. gas, int. P=29.5 Table C.4: Ignition Delay. m glowplug, DMVrneth. int. P=20 Table CS: Ignition Delay, no glowplug, DiMYmeth. int. P=25 vii Table C.6: Ignition Delay. no gfowplug,nitrolDMUmet h. int. P=20 Table C.7: Ignition Delay. no glowplug,nitro/DMUmeth, int. P=25 Table C.8: Ignition Delay and Bomb Temperatures. no glowplug. dme/methane, int P=20 Table C.9: Ignition Delay and Bomb Temperatures, no giowplug, nit/dme/methane, int P=20 Tables C. 10: Summary oi ignition Delay Times, Glowplug T=1400 K 1O0 Tables C. 1 1: Summary of Ignition Delay Times, Glowplug T= 1350 K LOO Tables C. 12: Summary of Ignition Delay Times. Glowplug T= 1375 K 1O0 Table C. 13: Bomb Test Data, nat. gas, GP Temp=1400 K, int P=O psig 101 Table C. 14: Bomb Test Data. nat. gas, GP Terne= 1400 K, int P=10 psig 102 Table C. 15: Bomb Test Data, nat. gas. GP Temp=1400 K, int P=20 psig 1 O3 Table C. 16: Bomb Test Data. nat. gas, GP Temp=LJOO K. int P=30 psig 1O4 Table C. 17: Bomb Test Data. DMEheth. GP Temp=1400 K. int Pdpsig 105 Table C.18: Bomb Test Data, DMUmeth, GP Temp=1400 K. int P=IO psig L O6 Tabie C. 19: Bomb Test Data, DMUmeth, GP Temp= 1400 K, int P=20 psig 1O7 Table C.20: Bomb Test Data, DMUmeth, GP Temp=1400 K, int P=30 psig 108 Table C.21: Bomb Test Data, nitrolDWmeth, GP Temp= 1400 K. int P=O psig 109 Table C.22: Bomb Test Data, nitrolDMUmeth, GP Temp=1400 K. int P=lO psig 110 Table C.23: Bomb Test Data, nitro/DMUmeth, GP Temp=140 K. int P=20 psig 111 Table C.24: Bomb Test Data, nitro/DME/meth, GP Temp=1400 K, int P=30 psig 112 Table C.25: Bornb Test Data, nat. gas. GP Temp=L350 K, int P=û psig 113 Table C.26: Bomb Test Data, nat. gas, GP Temp= 1350 K, int P=10 psig 114 Table C.27: Bomb Test Data. nat. gas, GP Temp=i350 K. int P=20 psig 115 viii Table C.28: Bomb Test Data. DMUmrth.. GP Temp=1330 K. int P=O psig Table C.29: Bomb Test Data. DMUmeth.. GP Temp= 1350 K, int P= 10 psig Table C.30: Bomb Test Data, DMUrneth.. GP Temp=l350 K, int P=20 psig Table C.3 1: Bomb Test Data, nitro/DME/meth., GP Temp=1350 K. int P=O psig Table C.32: Bomb Test Data, nitro/DME/meth., GP Temp=1350 K, int P=10 psig Table C.33: Bomb Test Data, nitrolDWmeth., GP Temp=1350 K. int P=20 psig Table C.34: Bomb Test Data, nat. gas, GP Ternp= 1375 K, int Pdpsig Table C.35: Bomb Test Data, nat. gas, GP Temp= 1375 K, int P= 10 psig Table C.36: Bomb Test Data, nat. gas, GP Temp=1375 K. int P=20 psig Table C.37: Bomb Test Data, DMUmeth.,GP Temp=1375 K. int P=û psig Table C.38: Bomb Test Data, DMUmeth., GP Temp=1375 K. int P= 1 O psig Table C.39: Bomb Test Data, DMUmeth.. GP Temp=1375 K. int P=20 psig Table C.40: Bomb Test Data, nitrolDMUmeth.. GP Temp= 1375 K, int P=O psig Table C.4 1: Bomb Test Data.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages146 Page
-
File Size-