The Transfer Operator Approach to ``Quantum Chaos

The Transfer Operator Approach to ``Quantum Chaos

<p>Front </p><p></p><ul style="display: flex;"><li style="flex:1">Modular surface </li><li style="flex:1">Spectral theory </li><li style="flex:1">Geodesics and coding </li><li style="flex:1">Transfer operator </li><li style="flex:1">Connection to spectral theory </li><li style="flex:1">Conclusions </li></ul><p></p><p>Front page </p><p>The transfer operator approach to “quantum chaos” </p><p>Classical mechanics and the Laplace-Beltrami operator on PSL<sub style="top: 0.12em;">2</sub>(Z)\H </p><p>Tobias Mu¨hlenbruch <br>Joint work with <a href="/goto?url=http://www.dynamik.tu-clausthal.de/institute/" target="_blank">D. Mayer </a>and <a href="/goto?url=http://www.mathematik.tu-darmstadt.de/fbereiche/AlgGeoFA/staff/stroemberg.php" target="_blank">F. Str</a><a href="/goto?url=http://www.mathematik.tu-darmstadt.de/fbereiche/AlgGeoFA/staff/stroemberg.php" target="_blank">¨</a><a href="/goto?url=http://www.mathematik.tu-darmstadt.de/fbereiche/AlgGeoFA/staff/stroemberg.php" target="_blank">omberg </a></p><p><a href="/goto?url=http://www.math.tu-clausthal.de/" target="_blank">Institut f</a><a href="/goto?url=http://www.math.tu-clausthal.de/" target="_blank">u</a><a href="/goto?url=http://www.math.tu-clausthal.de/" target="_blank">¨r Mathematik </a><br><a href="/goto?url=http://www.tu-clausthal-de" target="_blank">TU Clausthal </a></p><p><a href="mailto:[email protected]" target="_blank">[email protected] </a></p><p>22 January 2009, <a href="/goto?url=http://www.fernuni-hagen.de/" target="_blank">Fernuniversit</a><a href="/goto?url=http://www.fernuni-hagen.de/" target="_blank">¨</a><a href="/goto?url=http://www.fernuni-hagen.de/" target="_blank">at in Hagen </a></p><p>Front </p><p></p><ul style="display: flex;"><li style="flex:1">Modular surface </li><li style="flex:1">Spectral theory </li><li style="flex:1">Geodesics and coding </li><li style="flex:1">Transfer operator </li><li style="flex:1">Connection to spectral theory </li><li style="flex:1">Conclusions </li></ul><p></p><p>Outline of the presentation </p><p>1</p><p>Modular surface </p><p>23456</p><p>Spectral theory Geodesics and coding Transfer operator Connection to spectral theory Conclusions </p><p>Front </p><p>Modular surface </p><p></p><ul style="display: flex;"><li style="flex:1">Spectral theory </li><li style="flex:1">Geodesics and coding </li><li style="flex:1">Transfer operator </li><li style="flex:1">Connection to spectral theory </li><li style="flex:1">Conclusions </li></ul><p></p><p>The full modular group PSL (Z) <br>2</p><p>Let PSL<sub style="top: 0.12em;">2</sub>(Z) be the full modular group </p><p>PSL<sub style="top: 0.12em;">2</sub>(Z) = hS, T|(ST)<sup style="top: -0.35em;">3 </sup>= 1i = SL<sub style="top: 0.12em;">2</sub>(Z) mod { 1} </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>01</p><ul style="display: flex;"><li style="flex:1">−1 </li><li style="flex:1">1</li></ul><p>0<br>11<br>10<br>01</p><ul style="display: flex;"><li style="flex:1">with S = </li><li style="flex:1">, T = </li><li style="flex:1">and 1 = </li><li style="flex:1">.</li></ul><p>0</p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p>az+b cz+d </p><p></p><ul style="display: flex;"><li style="flex:1">a</li><li style="flex:1">b</li></ul><p></p><p>if z ∈ C, </p><p></p><ul style="display: flex;"><li style="flex:1">M¨obius transformations: </li><li style="flex:1">z = </li></ul><p></p><p>a</p><p></p><ul style="display: flex;"><li style="flex:1">c</li><li style="flex:1">d</li></ul><p></p><p>if z = ∞. </p><p>c</p><p>Three orbits: the upper halfplane H = {x + iy; y &gt; 0}, the projective real line P<sup style="top: -0.3em;">1</sup><sub style="top: 0.23em;">R </sub>and the lower half plane. z<sub style="top: 0.12em;">1</sub>, z<sub style="top: 0.12em;">2 </sub>are PSL<sub style="top: 0.12em;">2</sub>(Z)-equivalent if ∃M ∈ PSL<sub style="top: 0.12em;">2</sub>(Z) with </p><p>M z<sub style="top: 0.12em;">1 </sub>= z<sub style="top: 0.12em;">2</sub>. </p><p>The full modular group PSL<sub style="top: 0.12em;">2</sub>(Z) is generated by<sub style="top: 0.67em;">−1 </sub></p><ul style="display: flex;"><li style="flex:1">translation T : z → z + 1 and inversion S : z → </li><li style="flex:1">.</li></ul><p></p><p>z</p><p>ꢃ</p><p>12</p><p>(Closed) fundamental domain F = z ∈ H; |z| ≥ 1, |Re(z)| ≤ </p><p>.</p><p>Front </p><p>Modular surface </p><p></p><ul style="display: flex;"><li style="flex:1">Spectral theory </li><li style="flex:1">Geodesics and coding </li><li style="flex:1">Transfer operator </li><li style="flex:1">Connection to spectral theory </li><li style="flex:1">Conclusions </li></ul><p></p><p>The modular surface PSL (Z)\H <br>2</p><p>The upper half plane H = {x + iy; y &gt; 0} can be viewed as a hyperbolic plane with constant negative curvature −1. </p><p>dx<sup style="top: -0.26em;">2</sup>+dy<sup style="top: -0.26em;">2 </sup></p><p>Line element ds </p><p>ds<sup style="top: -0.31em;">2 </sup>= </p><p>y<sup style="top: -0.16em;">2 </sup></p><p>dxdy </p><p>Volume element dA </p><p>dA = </p><p>y<sup style="top: -0.16em;">2 </sup></p><p>The M¨obius transformations are compatible with the hyperbolic metric. This way, it makes sense to speak of the </p><p>modular surface PSL<sub style="top: 0.12em;">2</sub>(Z)\H. </p><p>Gluing F along the identified edges, we obtain a realization of the modular surface PSL<sub style="top: 0.12em;">2</sub>(Z)\H, a non-compact, finite surface with <sub style="top: 0.35em;">√</sub>one </p><p>1+i <br>2<br>3</p><p>cusp at z → i∞ and two conic singularities at z = i and z = The hyperbolic plane H is also called the Poincar´e half plane. PSL<sub style="top: 0.12em;">2</sub>(Z)\H is arithmetic (&nbsp;&nbsp;connection to number theory). <br>.</p><p>Front </p><p>Modular surface </p><p></p><ul style="display: flex;"><li style="flex:1">Spectral theory </li><li style="flex:1">Geodesics and coding </li><li style="flex:1">Transfer operator </li><li style="flex:1">Connection to spectral theory </li><li style="flex:1">Conclusions </li></ul><p></p><p>Hecke triangle groups </p><p>Possible extension of PSL<sub style="top: 0.12em;">2</sub>(Z): </p><p>Hecke triangle groups G<sub style="top: 0.12em;">q </sub></p><p>G<sub style="top: 0.12em;">q </sub>= hS, T<sub style="top: 0.12em;">q</sub>|(ST<sub style="top: 0.12em;">q</sub>)<sup style="top: -0.3em;">q </sup>= 1i with <br>, λ<sub style="top: 0.12em;">q </sub>= 2 cos&nbsp;π/q and q = 3, 4, 5, . . .. </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><ul style="display: flex;"><li style="flex:1">ꢄ</li><li style="flex:1">ꢅ</li></ul><p></p><p>10</p><p>λ<sub style="top: 0.12em;">q </sub></p><p>1</p><p>T = </p><p>Example: PSL<sub style="top: 0.12em;">2</sub>(Z) = G<sub style="top: 0.12em;">3</sub>. M¨obius transformation extends to G<sub style="top: 0.12em;">q</sub>. Fundamental domain </p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">o</li></ul><p></p><p>λ<sub style="top: 0.08em;">q </sub></p><p>F<sub style="top: 0.12em;">q </sub>= z ∈ H; |z| ≥ 1, |Re(z)| ≤ </p><p>.</p><p>2</p><p>Fundamental domain forms a (2, q, ∞) </p><p>π</p><p>2</p><p>π</p><p>q</p><p></p><ul style="display: flex;"><li style="flex:1">hyperbolic triangle with angles </li><li style="flex:1">,</li><li style="flex:1">and 0. </li></ul><p>G<sub style="top: 0.12em;">q</sub>\H is finite and non-compact. G<sub style="top: 0.12em;">q</sub>\H is non-arithmetic for q = 3, 4, 6. </p><p></p><ul style="display: flex;"><li style="flex:1">Front </li><li style="flex:1">Modular surface </li></ul><p></p><p>Spectral theory </p><p></p><ul style="display: flex;"><li style="flex:1">Geodesics and coding </li><li style="flex:1">Transfer operator </li><li style="flex:1">Connection to spectral theory </li><li style="flex:1">Conclusions </li></ul><p></p><p>Maass cusp forms </p><p>Maass cusp form u </p><p>u : H → C real-analytic function, </p><p></p><ul style="display: flex;"><li style="flex:1">ꢄ</li><li style="flex:1">ꢅ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">∆u = s(1 − s) u with ∆ = −y<sup style="top: -0.3em;">2 </sup>∂<sub style="top: 0.21em;">x</sub><sup style="top: -0.3em;">2 </sup>+ ∂<sub style="top: 0.21em;">y</sub><sup style="top: -0.3em;">2 </sup></li><li style="flex:1">,</li></ul><p>u(M z) = u(z) for all M ∈ PSL<sub style="top: 0.12em;">2</sub>(Z), </p><p></p><ul style="display: flex;"><li style="flex:1">ꢄ</li><li style="flex:1">ꢅ</li></ul><p></p><p>u(x + iy) = O y<sup style="top: -0.3em;">C </sup>as y → ∞ for all C ∈ R. </p><p>Maass cusp form at </p><p>1</p><p>s = +&nbsp;i13.7797 . . .. </p><p>∆ admits self-adjoined extension in L<sup style="top: -0.3em;">2 </sup>PSL<sub style="top: 0.12em;">2</sub>(Z)\H . </p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">ꢄ</li><li style="flex:1">ꢅ</li></ul><p></p><p>s is called spectral parameter. </p><p>s(1 − s) &gt; <sup style="top: -0.33em;">1</sup><sub style="top: 0.28em;">4 </sub>, i.e., s ∈ + iR<sup style="top: -0.31em;">⋆</sup>. </p><p>12</p><p>Discrete spectrum, eigenvalues have finite multiplicity, It is assumed that eigenvalues have multiplicity 1. Precise location of eigenvalues is unknown. </p><p>P</p><p>√</p><p>(2π |n| y) e<sup style="top: -0.3em;">2πinx </sup></p><p>Maass cusp form at </p><p>u(x + iy) = </p><p></p><ul style="display: flex;"><li style="flex:1">y</li><li style="flex:1">a<sub style="top: 0.12em;">n </sub>K </li></ul><p></p><p>1</p><p>s− <sub style="top: 0.2em;">2 </sub></p><p>0=n∈Z </p><p>12</p><p>s = +&nbsp;i9.533 . . .. </p><p></p><ul style="display: flex;"><li style="flex:1">Front </li><li style="flex:1">Modular surface </li></ul><p></p><p>Spectral theory </p><p></p><ul style="display: flex;"><li style="flex:1">Geodesics and coding </li><li style="flex:1">Transfer operator </li><li style="flex:1">Connection to spectral theory </li><li style="flex:1">Conclusions </li></ul><p></p><p>The Laplace-Beltrami operator </p><p></p><ul style="display: flex;"><li style="flex:1">ꢄ</li><li style="flex:1">ꢅ</li></ul><p></p><p>L<sup style="top: -0.31em;">2 </sup>PSL<sub style="top: 0.12em;">2</sub>(Z)\H are realized by functions h satisfying h: H → C measurable, h(M z) = f (z) for all M ∈ PSL<sub style="top: 0.12em;">2</sub>(Z) and </p><p>R</p><p>2</p><p><sub style="top: 0.3em;">F </sub>|h(x, iy)| y<sup style="top: -0.3em;">−2</sup>dxdy &lt; ∞. </p><p>Some properties of ∆ </p><p>The Laplace-Beltrami operator on L<sup style="top: -0.31em;">2</sup>(M) is the self-adjoined extension of ∆. </p><p>Spectrum of ∆ is discrete. </p><p>Area(H) </p><p>4π </p><p>Eigenvalues λ = s(1 − s) obey Weyl’s law: ♯{λ ≤ Λ} ∼ Conjectures about Eigenvalue statistics. Quantum unique ergodicity. <br>.<br>Arithmetic properties: Hecke operators, associated L-series satisfy a GRH. </p><p></p><ul style="display: flex;"><li style="flex:1">Front </li><li style="flex:1">Modular surface </li><li style="flex:1">Spectral theory </li></ul><p></p><p>Geodesics and coding </p><p></p><ul style="display: flex;"><li style="flex:1">Transfer operator </li><li style="flex:1">Connection to spectral theory </li><li style="flex:1">Conclusions </li></ul><p></p><p>Hurwitz continued fractions </p><p>Definition (Hurwitz continued fractions (CF)) </p><p>We identify a sequence of integers, a<sub style="top: 0.08em;">0 </sub>∈ Z, and a<sub style="top: 0.08em;">1</sub>, a<sub style="top: 0.08em;">2</sub>, . . . ∈ Z<sup style="top: -0.32em;">⋆ </sup>with a point <br>−1 </p><p></p><ul style="display: flex;"><li style="flex:1">a</li><li style="flex:1">a</li></ul><p></p><p>2</p><p>x = T<sup style="top: -0.36em;">a</sup><sup style="top: -0.26em;">0 </sup>ST <sup style="top: -0.26em;">1 </sup>ST · · ·&nbsp;0 = a<sub style="top: 0.08em;">0 </sub>+ </p><p>=: [a0; a1, a2, . . .] </p><p>−1 </p><p>a<sub style="top: 0.08em;">1 </sub>+ </p><p>−1 </p><p>... </p><p>a</p><p>2</p><p>+</p><p>and say that it is a </p><p>non-regular (formal) CF, [a0; a1, a2, . . .] in general. </p><p>regular CF, [a0; a1, a2, . . .], if it does not contain “forbidden blocks”: </p><ul style="display: flex;"><li style="flex:1">no 1&nbsp;appear </li><li style="flex:1">and </li><li style="flex:1">if a<sub style="top: 0.08em;">i </sub>= 2&nbsp;then a<sub style="top: 0.08em;">i+1 </sub>≶&nbsp;0. </li></ul><p></p><p>π = [3; −7, 16, 294, 3, 4, 5, 15, . . .] and e = [3; 4, 2, −5, −2, 7, 2, −9, . . .] </p><p>Equivalent points </p><p>x and y are equivalent :⇔ there exist a g ∈ PSL<sub style="top: 0.08em;">2</sub>(Z) such that gx = y ⇔ the CF of x and y have the same tail or the CF of x and y have tail [&nbsp;3 ]&nbsp;and [&nbsp;−3 ]. </p><p></p><ul style="display: flex;"><li style="flex:1">Front </li><li style="flex:1">Modular surface </li><li style="flex:1">Spectral theory </li></ul><p></p><p>Geodesics and coding </p><p></p><ul style="display: flex;"><li style="flex:1">Transfer operator </li><li style="flex:1">Connection to spectral theory </li><li style="flex:1">Conclusions </li></ul><p></p><p>Associated dynamical system </p><p>The generating map f </p><p>12</p><p></p><ul style="display: flex;"><li style="flex:1">(x) ∈ Z denotes the nearest integer of x, i.e. |x − (x)| ≤ </li><li style="flex:1">.</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">ꢆ</li><li style="flex:1">ꢇ</li></ul><p></p><p>1</p><p>For I = −<sub style="top: 0.28em;">2 </sub>, <sup style="top: -0.33em;">1</sup><sub style="top: 0.28em;">2 </sub>the generating map for the CF of x is </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">−1 </li><li style="flex:1">−1 </li></ul><p></p><p>f : I → I; x → </p><p>−</p><p>.</p><p></p><ul style="display: flex;"><li style="flex:1">x</li><li style="flex:1">x</li></ul><p></p><p>The coefficients a<sub style="top: 0.12em;">0</sub>, a<sub style="top: 0.12em;">1</sub>, . . .&nbsp;computed by </p><p>−1 </p><p>a<sub style="top: 0.12em;">0 </sub>= (x) and x<sub style="top: 0.12em;">n+1 </sub>= f (x<sub style="top: 0.12em;">n</sub>) = </p><p>− a<sub style="top: 0.12em;">n+1 </sub></p><p>x<sub style="top: 0.08em;">n </sub></p><p>satisfy x = [a<sub style="top: 0.12em;">0</sub>; a<sub style="top: 0.12em;">1</sub>, . . .] and the CF is regular. </p><p>Natural extension of f </p><p>The natural extension of f is </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>−1 <br>Ω → Ω; (x, y) → f (x), </p><p>y + a<sub style="top: 0.12em;">1 </sub></p><p>with x = [0; a<sub style="top: 0.12em;">1</sub>, . . .]. </p><p></p><ul style="display: flex;"><li style="flex:1">Front </li><li style="flex:1">Modular surface </li><li style="flex:1">Spectral theory </li></ul><p></p><p>Geodesics and coding </p><p></p><ul style="display: flex;"><li style="flex:1">Transfer operator </li><li style="flex:1">Connection to spectral theory </li><li style="flex:1">Conclusions </li></ul><p></p><p>PSL (Z) and geodesics <br>2</p><p>Recall PSL<sub style="top: 0.12em;">2</sub>(Z) = hS, Ti. We denote geodesics γ on H by its base points: γ = (γ ,&nbsp;γ<sub style="top: 0.12em;">+</sub>). </p><p>−</p><p>In the diagram we illustrate the closed geodesic γ = ([0; −3, −4], [0; −4, −3]<sup style="top: -0.3em;">−1</sup>). </p><p>Theorem </p><p>Each geodesic γ<sup style="top: -0.31em;">′ </sup>is PSL<sub style="top: 0.12em;">2</sub>(Z)-equivalent with a geodesic </p><p>γ = (γ ,&nbsp;γ<sub style="top: 0.12em;">+</sub>) satisfying (γ ,&nbsp;γ<sup style="top: -0.35em;">−1</sup>) ∈ Ω. </p><p></p><ul style="display: flex;"><li style="flex:1">−</li><li style="flex:1">−</li></ul><p></p><p>+</p><p>If γ<sup style="top: -0.3em;">′ </sup>is closed then γ = [0; a<sub style="top: 0.12em;">1</sub>, . . . , a<sub style="top: 0.12em;">n</sub>] is regular and </p><p>−</p><p>γ<sub style="top: 0.2em;">+</sub><sup style="top: -0.35em;">−1 </sup>= [0; a<sub style="top: 0.12em;">n</sub>, . . . , a<sub style="top: 0.12em;">1</sub>] </p><p>If γ and υ satisfy (γ ,&nbsp;γ<sup style="top: -0.36em;">−1</sup>), (υ ,&nbsp;υ<sup style="top: -0.36em;">−1</sup>) ∈ Ω and no base point is </p><p></p><ul style="display: flex;"><li style="flex:1">−</li><li style="flex:1">−</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">+</li><li style="flex:1">+</li></ul><p></p><p>√<br>3− </p><p>5</p><p></p><ul style="display: flex;"><li style="flex:1">PSL<sub style="top: 0.12em;">2</sub>(Z)-equivalent with [0; 3] = </li><li style="flex:1">then γ = υ. </li></ul><p></p><p>2</p><p>Nearest λ-multiple continued fractions </p><p></p><ul style="display: flex;"><li style="flex:1">Front </li><li style="flex:1">Modular surface </li><li style="flex:1">Spectral theory </li><li style="flex:1">Geodesics and coding </li></ul><p></p><p>Transfer operator </p><p></p><ul style="display: flex;"><li style="flex:1">Connection to spectral theory </li><li style="flex:1">Conclusions </li></ul><p></p><p>The Ising model and transfer matrices </p><p>Ernst Ising (1900 – 1998) discussed an 1 − d lattice spin model. </p><p>Ising-Model </p><p>Config. space S = { 1}<sup style="top: -0.32em;">N</sup>; left-shift τ : S → S, (τξ)<sub style="top: 0.08em;">i </sub>:= ξ<sub style="top: 0.08em;">i+1</sub>. </p><p></p><ul style="display: flex;"><li style="flex:1">P</li><li style="flex:1">P</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">∞</li><li style="flex:1">∞</li></ul><p></p><p>Total energy: E = −J <sub style="top: 0.23em;">i=1 </sub>ξ<sub style="top: 0.08em;">i </sub>ξ<sub style="top: 0.08em;">i+1 </sub>+ B <sub style="top: 0.23em;">i=1 </sub>ξ<sub style="top: 0.08em;">i </sub>with spin interaction J and magnetic field interaction B.) </p><p>Ernst Ising ≈ 1925. </p><p>Partition function Z<sub style="top: 0.08em;">m</sub>(A, s) </p><p>P</p><p>X</p><p>m−1 k=0 </p><p>k</p><p>A(τ ξ) </p><p>e<sup style="top: -0.36em;">−s </sup></p><p></p><ul style="display: flex;"><li style="flex:1">with s = </li><li style="flex:1">and A(ξ) = J ξ<sub style="top: 0.08em;">0</sub>ξ<sub style="top: 0.08em;">1 </sub>+ Bξ<sub style="top: 0.08em;">0</sub>. </li></ul><p></p><p>1Temp. </p><p>Z<sub style="top: 0.08em;">m</sub>(A, s) = </p><p>ξ∈S; m−periodic </p><p>&nbsp;&nbsp;free energy = lim<sub style="top: 0.08em;">m→∞ </sub>m<sup style="top: -0.31em;">−1 </sup>log Z<sub style="top: 0.08em;">m</sub>(A, s). <br>Ising rewrote Z<sub style="top: 0.08em;">m </sub>as </p><p>X</p><p>e(ξ<sub style="top: 0.08em;">1</sub>, ξ<sub style="top: 0.08em;">2</sub>) · · · e(ξ<sub style="top: 0.08em;">m</sub>, ξ<sub style="top: 0.08em;">1</sub>) with&nbsp;e(ξ<sub style="top: 0.08em;">i </sub>, ξ<sub style="top: 0.08em;">j </sub>) = e<sup style="top: -0.36em;">−s(Jξ ξ −Bξ ) </sup></p><p>.</p><p></p><ul style="display: flex;"><li style="flex:1">i</li><li style="flex:1">j</li><li style="flex:1">i</li></ul><p></p><p>Z<sub style="top: 0.08em;">m</sub>(A, s) = </p><p>ξ</p><p>1</p><p>,...,ξ ∈{ 1} </p><p>m</p><p>Transfer matrix L<sub style="top: 0.08em;">s </sub></p><p></p><ul style="display: flex;"><li style="flex:1">„</li><li style="flex:1">«</li></ul><p></p><ul style="display: flex;"><li style="flex:1">`</li><li style="flex:1">´</li></ul><p></p><p>e(+1, +1) e(+1, −1) e(−1, +1) e(−1, −1) </p><ul style="display: flex;"><li style="flex:1">L<sub style="top: 0.08em;">s </sub>:= </li><li style="flex:1">satisfies Z<sub style="top: 0.08em;">m</sub>(A, s) = trace&nbsp;L<sub style="top: 0.13em;">s</sub><sup style="top: -0.32em;">m </sup></li><li style="flex:1">.</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Front </li><li style="flex:1">Modular surface </li><li style="flex:1">Spectral theory </li><li style="flex:1">Geodesics and coding </li></ul><p></p><p>Transfer operator </p><p></p><ul style="display: flex;"><li style="flex:1">Connection to spectral theory </li><li style="flex:1">Conclusions </li></ul><p></p><p>General form of a transfer operator </p><p>General form of a transfer operator </p><p>Given a set Λ and maps f : Λ → Λ and g : Λ → C, a transfer operator L acting on functions h: Λ → C is defined by </p><p>X</p><ul style="display: flex;"><li style="flex:1">ꢄ</li><li style="flex:1">ꢅ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Lh (x) = </li><li style="flex:1">g(y) h(y) </li></ul><p></p><p>y∈f <sup style="top: -0.16em;">−1</sup>(x) </p><p>Remarks: <br>Usually, take g = |J|<sup style="top: -0.42em;">−1 </sup>if the Jacobian J of f exists. </p><p>ꢄ</p><p>ꢅ<sub style="top: 0.17em;">−1 </sub></p><p>P</p><p>L of the form Lh(x) = </p><p>f <sup style="top: -0.3em;">′</sup>(y) </p><p>h(y) is also known as a </p><p>y∈f <sup style="top: -0.17em;">−1</sup>(x) </p><p>Perron-Frobenius Operator. </p><p>more </p><p>Relation of L to the dynamical zeta-function: <br>1ζ(z) = </p><p>.</p><p>det<sup style="top: -0.37em;">c </sup>(1 − zL) </p><p></p><ul style="display: flex;"><li style="flex:1">Front </li><li style="flex:1">Modular surface </li><li style="flex:1">Spectral theory </li><li style="flex:1">Geodesics and coding </li></ul><p></p><p>Transfer operator </p><p></p><ul style="display: flex;"><li style="flex:1">Connection to spectral theory </li><li style="flex:1">Conclusions </li></ul><p></p><p>The transfer operator for continued fractions </p><p>Recall respectively define: </p><p>0 −1 <br>1 0 </p><p></p><ul style="display: flex;"><li style="flex:1">`</li><li style="flex:1">´</li><li style="flex:1">`</li><li style="flex:1">´</li></ul><p></p><p>1 1 0 1 </p><p>S = </p><p></p><ul style="display: flex;"><li style="flex:1">and T = </li><li style="flex:1">∈ PSL<sub style="top: 0.08em;">2</sub>(Z), </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">˛</li><li style="flex:1">`</li><li style="flex:1">`</li><li style="flex:1">´´ </li><li style="flex:1">`</li><li style="flex:1">´</li><li style="flex:1">`</li><li style="flex:1">´</li></ul><p></p><p>−s a b </p><p>c d </p><p>(z) :=&nbsp;(cz + d)<sup style="top: -0.32em;">2 </sup></p><p>h</p><p>and </p><p>az+b cz+d </p><p>˛</p><p>h</p><p>2s </p><p></p><ul style="display: flex;"><li style="flex:1">ˆ</li><li style="flex:1">˜</li><li style="flex:1">ˆ</li><li style="flex:1">˜</li></ul><p></p><p>f : −<sup style="top: -0.3em;">1</sup><sub style="top: 0.26em;">2 </sub>, </p><p>→ −<sup style="top: -0.3em;">1</sup><sub style="top: 0.26em;">2 </sub>, </p><p>;</p><p>x → </p><p>(mod 1) = T<sup style="top: -0.32em;">−n</sup>S x&nbsp;for some n ∈ Z. </p><p>12<br>12<br>−1 </p><p>x</p><p>The associated transfer operator is formally given by </p><p>ꢄ</p><p>ꢅ<sub style="top: 0.17em;">−s </sub></p><p>P</p><p>L<sub style="top: 0.12em;">s </sub>h(x) := </p><p>f <sup style="top: -0.3em;">′</sup>(y) </p><p></p><ul style="display: flex;"><li style="flex:1">h(y) </li><li style="flex:1">(x ∈ [−1/2, 1/2]) </li></ul><p></p><p>y∈f <sup style="top: -0.17em;">−1</sup>(x) </p><p>Banach space (with sup-norm) V := C(D) ∩ C<sup style="top: -0.3em;">ω</sup>(D<sup style="top: -0.3em;">◦</sup>), D = {z; |z| ≤ 1}. </p><p>Transfer operator for continued fractions </p><p>The operator L<sub style="top: 0.12em;">s </sub>: :&nbsp;V × V → V × V , Re(s) &gt; 1, is defined as </p><p></p><ul style="display: flex;"><li style="flex:1">ꢈ</li><li style="flex:1">ꢈ</li></ul><p>ꢀP<sub style="top: 0.21em;">∞ </sub></p><p>P<sub style="top: 0.2em;">∞ </sub></p><p>ꢁ</p><p><sub style="top: 0.25em;">n=3 </sub>h<sub style="top: 0.12em;">1</sub><sub style="top: 0.33em;">ꢈ2s</sub>ST<sup style="top: -0.3em;">n </sup></p><p>++</p><p><sub style="top: 0.25em;">n=2 </sub>h<sub style="top: 0.12em;">2</sub><sub style="top: 0.33em;">ꢈ2s </sub>ST<sup style="top: -0.3em;">−n </sup></p><p></p><ul style="display: flex;"><li style="flex:1">ꢈ</li><li style="flex:1">ꢈ</li></ul><p></p><p>~</p><p></p><ul style="display: flex;"><li style="flex:1">P<sub style="top: 0.2em;">∞ </sub></li><li style="flex:1">P<sub style="top: 0.2em;">∞ </sub></li></ul><p></p><p>L<sub style="top: 0.12em;">s </sub>h(z) = </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    28 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us