Crystallization Fields of Polyhalite and its Heavy Metal Analogues Der Fakultät für Chemie und Physik Der Technischen Universität Bergakademie Freiberg genehmigte DISSERTATION Zur Erlangung des akademischen Grades Doctor rerum naturalium Dr. rer. nat. vorgelegt von Diplom-Chemiker Georgia Wollmann geboren am 26.12.1978 in Leipzig Gutachter: Prof. Dr. rer. nat. Wolfgang Voigt, Freiberg Prof. Dr. rer. nat. Axel König, Erlangen Tag der Verleihung: 05.03.2010 1 Contents Contents 1. Introduction 1 2. Mineral Names and Quantities 3 2.1. List of Mineral Names 3 2.2. Quantities 5 3. Literature Review 7 3.1. Basic Thermodynamics of Electrolyte Solutions 7 3.1.1. Activity 7 3.1.2. Osmotic Coefficients 7 3.1.3. Solubility Constants 8 3.1.4. Relative Apparent Molar Enthalpy 8 3.2. Ion Interaction Models 9 3.2.1. The Pitzer Equations 10 3.2.2. The SIT Model 16 3.3. Characterization of Salt-Water Systems 18 X+ 2- 3.3.1. Binary Systems M / SO4 // H2O (M = K, Ca, Mg, Mn, Co, Ni, Cu, Zn) 18 + 2+ 2- 3.3.2. Ternary Systems K , M / SO4 // H2O (M = Ca, Mg, Mn, Co, Ni, Cu, Zn) 36 2+ 2+ 2- 3.3.3. Ternary Systems Ca , M / SO4 // H2O (M = Mg, Mn, Co, Ni, Cu, Zn) 42 + 2+ 2+ 2- 3.3.4. Quaternary Systems K , Ca , M / SO4 // H2O (M = Mg, Mn, Co, Ni, Cu, Zn) 44 3.3.5. Conclusions from the Literature Review 46 4. Determination of Solubility Equilibria in the Ternary + 2+ 2+ 2- and Quaternary Systems with K , Ca , M and SO4 in H2O (M = Mg, Mn, Co, Ni, Cu, Zn) 48 4.1. General Experimental Procedures 48 + 2+ 2- 4.2. Ternary Systems K , M / SO4 // H2O (M = Mg, Mn, Co, Ni, Cu, Zn) 48 + 2+ 2- 4.2.1. Experimental Procedures - K , M / SO4 // H2O 48 + 2+ 2- 4.2.2. Results - K , M / SO4 // H2O (M = Mg, Mn, Co, Ni, Cu, Zn) 49 2+ 2+ 2- 4.3. Ternary Systems Ca , M / SO4 // H2O (M = Mg, Mn, Co, Ni, Cu, Zn) 62 2+ 2+ 2- 4.3.1. Experimental Procedures - Ca , M / SO4 // H2O 62 2+ 2+ 2- 4.3.2. Results - Ca , M / SO4 // H2O (M = Mg, Mn, Co, Ni, Cu, Zn) 63 + 2+ 2+ 2- 4.4. Quaternary Systems K , Ca , M / SO4 // H2O (M = Mg, Mn, Co, Ni, Cu, Zn) 75 2 Contents + 2+ 2+ 2- 4.4.1. Experimental Procedures - K , Ca , M / SO4 // H2O 75 + 2+ 2+ 2- 4.4.2. Results - K , Ca , M / SO4 // H2O (M = Mg, Mn, Co, Ni, Cu, Zn) 75 4.5. Decomposition of Polyhalite in Solutions of the System + 2+ 2+ 2- K , Ca , Mg / SO4 // H2O 80 4.5.1. Experimental Procedures - Decomposition of Polyhalite 80 4.5.2. Results - Decomposition of Polyhalite 81 5. Determination of the Enthalpies of Dissolution of the Polyhalites at Infinite Dilution 83 5.1. Experimental Procedures - Enthalpies of Dissolution 83 5.2. Results - Enthalpies of Dissolution 84 6. Estimation of Pitzer Parameters 89 6.1. Parameters for Pure Electrolytes 89 6.1.1. Binary Parameters of MSO4 (M = Mn, Co, Ni, Cu, Zn) at 298 K 89 6.1.2. Binary Parameters of MSO4 (M = Mn, Co, Ni, Cu, Zn) at T = 298 K - 323 K 92 6.2. Parameters for Mixed Electrolytes at 298 K and 313 K 105 + 2+ 2- 6.2.1. Pitzer Mixing Parameters of K -M -SO4 (M = Mn, Co, Ni, Cu, Zn) 105 2+ 2+ 2- 6.2.2. Pitzer Mixing Parameters of Ca -M -SO4 (M = Mg, Mn, Co, Ni, Cu, Zn) 112 7. Estimation of Solubility Constants of Polyhalite and its Analogues, K2SO4·MSO4·2CaSO4·2H2O (M = Mg, Mn, Co, Ni, Cu, Zn) 116 + + 2+ 2+ - 2- 8. The Hexary System Na , K , Mg , Ca / Cl , SO4 // H2O 130 9. Preparation of Substances and Analyses 135 9.1. Preparation of Substances 135 9.2. Analyses of Solutions 135 9.2.1. Sodium Analyses 136 9.2.2. Potassium Analyses 136 9.2.3. Magnesium Analyses 136 9.2.4. Calcium Analyses 136 9.2.5. Manganese Analyses 137 9.2.6. Cobalt Analyses 138 9.2.7. Nickel Analyses 138 9.2.8. Copper Analyses 138 9.2.9. Zinc Analyses 138 3 Contents 9.3. Characterization of the Solids 138 9.3.1. Powder X-ray Diffraction 138 9.3.2. Raman Spectroscopic Analyses 138 9.3.3. Thermal Analyses 139 10. Conclusion 140 11. Bibliography 145 Appendix A – Experimental and Constants 159 Appendix B – Experimental Results 161 Appendix C – Temperature-Dependent Parameters 198 Versicherung 203 Danksagung 204 4 Introduction 1. Introduction Phase equilibrium studies of the hexary oceanic salt system (Na+, K+, Mg2+, Ca2+ / Cl-, 2- SO4 // H2O) are fundamental in many areas of research and technology. This concerns for example the understanding of natural evaporitic deposits (1, 2), performance assessment studies of nuclear and toxic wastes in rock salt formations (3, 4), production of potash fertilizer (5, 6), interpretation of recent salt discoveries on Mars (7, 8) and corrosion of building materials (9, 10). Assessment studies of rock salt formations require a prediction of possible dissolution and formation reactions of the involved salts. These reactions depend on the composition of the occurring solutions, the minerals present and the temperature. The mineral polyhalite, K2SO4·MgSO4·2CaSO4·2H2O, is abundantly distributed in rock salt formations. In the context of waste disposal concepts in rock salt formations, it is of interest to know whether the Mg2+ ion in polyhalite can be substituted by other bivalent metal ions and thus whether polyhalite could serve as a natural heavy metal sink. In this work the possible heavy metal ions substituted in polyhalite were limited to Mn2+, Co2+, Ni2+, Cu2+, Zn2+. Determinations of mineral solubilities in multi-electrolyte solutions require extensive experimental work. Modeling the systems allows the prediction of properties for complex mixtures based on information obtained from simple systems. One of the quantities needed is the solubility constant Ksol. In order to determine the solubility constants of the heavy metal-containing polyhalites, knowledge about molalities, activity coefficients, and water activity is needed to determine this equilibrium constant. The molalities of cations and anions in solutions, where the salt hydrate is stable, can be obtained from solubility + 2+ 2+ 2- measurements. The basic system where polyhalite occurs is K , Mg , Ca / SO4 // H2O. Therefore the solubility determinations of polyhalite and its substituted analogues were + 2+ 2+ 2- performed in the quaternary systems K , M , Ca / SO4 // H2O (M = Mg, Mn, Co, Ni, Cu, Zn). Since polyhalite forms slowly over months or years at 298 K, the solid-liquid phase equilibria experiments were carried out at 313 K. The determination of the activity coefficients and the water activity requires extensive studies especially for mixed electrolyte solutions at high ionic strengths. For that reason, models are used to interpolate these data from suitable sources. Pitzer’s equation and the SIT model (Specific Ion Interaction Theory) consider aspects to describe highly concentrated multi-component systems. To use these models, knowledge 1 Introduction 2+ 2- of ion interaction parameters of the binary systems M / SO4 // H2O and the ternary + 2+ 2- + 2+ 2- 2+ 2+ 2- systems K , Ca / SO4 // H2O; K , M / SO4 // H2O; M , Ca / SO4 // H2O (M = Mn, Co, Ni, Cu, Zn) is necessary. The aim of this work is the determination of the solubility constants of K2SO4·MSO4·2CaSO4·2H2O (M = Mg, Mn, Co, Ni, Cu, Zn) at 298 K. Hence, this work mainly focuses on the systematic acquisition of published solubility data in the quaternary systems + 2+ 2+ 2- K , M , Ca / SO4 // H2O (M = Mg, Mn, Co, Ni, Cu, Zn) and their subsystems, the systematic acquisition of available Pitzer parameters of the relevant ion interactions at 298 K and 313 K, the investigation of solid-liquid phase equilibria of the systems K+, M2+, Ca2+ / 2- SO4 // H2O (M = Mg, Mn, Co, Ni, Cu, Zn) and their sub-systems at 313 K, and the estimation of missing Pitzer parameters from published solubility data, as well as the determination of these solid-liquid data. For estimation of the temperature dependence of the solubility constants, the enthalpies of dissolution of the polyhalites K2SO4·MSO4·2CaSO4·2H2O (M = Mg, Mn, Co, Ni, Cu, Zn) at infinite dilution are determined. 2 Mineral Names and Quantities 2. Mineral Names and Quantities 2.1. List of Mineral Names Mineral name Formula Alpersite -MgSO4·7H2O Anhydrite CaSO4 Arcanite K2SO4 Astrakanite Na2SO4·MgSO4·4H2O Bassanite CaSO4·0.5H2O Bischofite MgCl2·6H2O Carnallite KCl·MgCl2·6H2O “Co-Polyhalite” K2SO4·CoSO4·2CaSO4·2H2O D’Ansite 3NaCl·9Na2SO4·MgSO4 Epsomite MgSO4·7H2O Glaserite 3K2SO4·Na2SO4 Glauberite Na2SO4·CaSO4 Görgeyite K2SO4·5CaSO4·H2O Gypsum CaSO4·2H2O Halite NaCl Hexahydrite MgSO4·6H2O Kainite 4KCl·4MgSO4·11H2O Kieserite MgSO4·H2O Langbeinite K2SO4·2MgSO4 Leightonite K2SO4·CuSO4·2CaSO4·2H2O 3 Mineral Names and Quantities Mineral Formula Leonite K2SO4·MgSO4·4H2O Löwite 6Na2SO4·7MgSO4·15H2O Meridianiite MgSO4·11H2O “Mn-Polyhalite” K2SO4·MnSO4·2CaSO4·2H2O “Ni-Polyhalite” K2SO4·NiSO4·2CaSO4·2H2O “Nonasulfate” 3NaCl·9Na2SO4·MgSO4 Pentahydrite MgSO4·5H2O Picromerite K2SO4·MgSO4·6H2O “Mg-Polyhalite” K2SO4·MgSO4·2CaSO4·2H2O Starkeyite MgSO4·4H2O Sylvite KCl Syngenite K2SO4·CaSO4·H2O Thenardite Na2SO4 Tutton’s salt K2SO4·MSO4·6H2O (M = Mn, Co, Ni, Cu, Zn) Vanthoffite 3Na2SO4·MgSO4 “Zn-Polyhalite” K2SO4·ZnSO4·2CaSO4·2H2O 4 Mineral Names and Quantities 2.2. Quantities Name Symbol Activity a Activity coefficient Amount of substance n Avogadro’s number N0 Boltzmann’s constant k Calculated activity coefficient calc Calculated osmotic coefficient calc Debye-Hückel coefficients A , A , AL Density d Deviation of the activity coefficient = calc - exp Deviation of the osmotic coefficient = calc - exp Electronic charge e Equilibrium constant K Excess Gibbs energy G ex Experimental activity coefficient exp Experimental osmotic coefficient exp Fractional deviation of the activity coefficient / Fractional deviation of the osmotic
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages209 Page
-
File Size-