Department of Physical Geography and Quaternary Geology Modelling Climatic and Hydrological Variability in Lake Babati, Northern Tanzania Marc Girons Lopez Master’s thesis NKA 45 Physical Geography and Quaternary Geology, 30 HECs 2011 Preface This Master’s thesis is Marc Girons Lopez’s degree project in Physical Geography and Quaternary Geology, at the Department of Physical Geography and Quaternary Geology, Stockholm University. The Master’s thesis comprises 30 HECs (one term of full-time studies). Supervisors have been Jerker Jarsjö and Maria Malmström Ryner, at the Department of Physical Geography and Quaternary Geology, Stockholm University. Examiner has been Steve Lyon, at the Department of Physical Geography and Quaternary Geology, Stockholm University. The author is responsible for the contents of this thesis. Stockholm, 21 June 2011 Clas Hättestrand Director of studies Modeling Climatic and Hydrological Variability in Lake Babati, Northern Tanzania Abstract A good understanding of the local and regional water cycle and how it is modified by landscape changes may help policymakers take the pertinent decisions in order to avoid adverse effects of future hydro–climatic changes. This knowledge is of particular interest in the most vulnerable areas of the world such as the African continent. In this context the aim of this project is to model hydrological responses to possible changes in climatic conditions in Lake Babati, northern Tanzania. For this reason a water balance model specially designed to simulate lake level changes was adapted to Lake Babati and calibrated with the available local meteorological and hydrological data record covering the last decades. The necessary ambient condition changes to produce a dry–out and an overflow of the lake were investigated and the response of the system to future IPCC climate change projections was studied. The results show that for instance a temperature change of less than 3ºC or a precipitation change of around 100 mm/year could eventually bring the lake from a dry–out situation to an overflow situation. Furthermore, the IPCC derived scenarios show a clear tendency of the lake to increase its volume and reach the overflow level in a relatively short time. I Modeling Climatic and Hydrological Variability in Lake Babati, Northern Tanzania Table of Contents 1. Introduction ................................................................................................. 1 1.1 Aim of the project ............................................................................................ 2 1.2 Background ...................................................................................................... 2 1.2.1 Modelling East African lakes ..................................................................................... 3 1.2.2 Water balance model choice ..................................................................................... 5 1.3 Site description ................................................................................................ 5 1.3.1 Lake Babati Formation .............................................................................................. 6 1.3.2 Lake Babati Catchment ............................................................................................. 7 1.3.3 Hydrology .................................................................................................................. 8 1.3.4 Climatology .............................................................................................................. 11 1.3.5 Land–use changes .................................................................................................. 11 1.4 Meteorological and hydrological records .....................................................13 1.4.1 20th century floods and lake level records .............................................................. 13 1.4.2 Precipitation records ................................................................................................ 15 1.4.3 Temperature records ............................................................................................... 15 1.5 2009 expedition ...............................................................................................16 2. Methodology ............................................................................................. 17 2.1 Overview of the Area–volume relationship derivation .................................17 2.2 Overview of the water balance model ...........................................................17 2.3 Lake Emakat water balance model improvement .........................................18 2.3.1 Ground evapotranspiration calculations .................................................................. 18 2.3.2 Groundwater routine modifications ......................................................................... 20 2.3.3 Other changes ......................................................................................................... 24 2.4 Scenario analysis description .......................................................................25 3. Synthesis of input data and model calibration ...................................... 27 3.1 Determination of the area–volume relationship ...........................................27 3.1.1 Digital Elevation Model ............................................................................................ 27 3.1.2 Area–volume relationship ........................................................................................ 30 3.2 Estimation of meteorological and hydrological variables for the reference period .........................................................................................................................32 3.2.1 Meteorological variables .......................................................................................... 33 3.2.2 Hydrological variables ............................................................................................. 35 i Marc Girons Lopez 3.3 Calibration factor determination and convergence criterion ...................... 37 3.4 Model parameters values overview .............................................................. 38 4. Model simulation results ......................................................................... 39 4.1 Sensitivity studies ......................................................................................... 39 4.1.1 Parameter sensitivity ............................................................................................... 39 4.1.2 Model lake level response to instant parameter changes ....................................... 41 4.2 Simulation results – future scenarios .......................................................... 43 5. Discussion and conclusions ................................................................... 45 5.1 Model uncertainty sources............................................................................ 45 5.2 Sensitivity studies ......................................................................................... 46 5.3 Hydro–climatic scenarios studies ................................................................ 49 5.4 Conclusions ................................................................................................... 50 5.5 Future work .................................................................................................... 51 6. Acknowledgements ................................................................................. 52 References ...................................................................................................... 53 Annex A: List of figures .................................................................................... I Annex B: List of tables .................................................................................... III Annex C: Lake Babati Bathymetric transects ................................................ V ii Modeling Climatic and Hydrological Variability in Lake Babati, Northern Tanzania 1. Introduction In recent years climate change and its derived catastrophic events has been a global concern. Huge forest fires in Australia, extensive floods in central Europe or massive landslides in South America are but some of the most outstanding examples of the magnitude of these events (Cary 2002; Christensen & Christensen 2003; Porfiriev 2009; Schuster et al. 2002). The most part of these phenomena have a close relationship with the water cycle (Bates et al. 2008). An excess of water is ultimately responsible for floods and landslides while a lack of it will inevitably lead to drought (Slaymaker et al. 2009). But water is not the only factor playing a key role. The considerable population increase in most parts of the world is leading to an unprecedented change in the landscape such as clearing of forests or drying of marshlands in order to create crop fields (IPCC 2010). These changes in the landscape may also contribute to triggering catastrophic events that otherwise would have not occurred (Diamond 2006; Smith & Petley 2008). Therefore, it has become a crucial matter to understand the water cycle not only in the global scale but also in the regional and local scale, especially in the most vulnerable parts of the world (Gleick 1987; Jones 1997). A good understanding of the local and regional water cycle and how it is modified by landscape changes may help policymakers take the pertinent decisions in order to avoid adverse effects of future hydro–climatic
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages73 Page
-
File Size-