Lecture 26 Dielectric Slab Waveguides

Lecture 26 Dielectric Slab Waveguides

Lecture 26 Dielectric Slab Waveguides In this lecture you will learn: • Dielectric slab waveguides •TE and TM guided modes in dielectric slab waveguides ECE 303 – Fall 2005 – Farhan Rana – Cornell University TE Guided Modes in Parallel-Plate Metal Waveguides r E()rr = yˆ E sin()k x e− j kz z x>0 o x x Ei Ei r r Ey k E r k i r kr i H Hi i z ε µo Hr r r ki = −kx xˆ + kzzˆ kr = kx xˆ + kzzˆ Guided TE modes are TE-waves bouncing back and fourth between two metal plates and propagating in the z-direction ! The x-component of the wavevector can have only discrete values – its quantized m π k = where : m = 1, 2, 3, x d KK ECE 303 – Fall 2005 – Farhan Rana – Cornell University 1 Dielectric Waveguides - I Consider TE-wave undergoing total internal reflection: E i x ε1 µo r k E r i r kr H θ θ i i i z r H r ki = −kx xˆ + kzzˆ r kr = kx xˆ + kzzˆ Evanescent wave ε2 µo ε1 > ε2 r E()rr = yˆ E e− j ()−kx x +kz z + yˆ ΓE e− j (k x x +kz z) 2 2 2 x>0 i i kz + kx = ω µo ε1 Γ = 1 when θi > θc When θ i > θ c : kx = − jα x r E()rr = yˆ T E e− j kz z e−α x x 2 2 2 x<0 i kz − α x = ω µo ε2 ECE 303 – Fall 2005 – Farhan Rana – Cornell University Dielectric Waveguides - II x ε2 µo Evanescent wave cladding Ei E ε1 µo r i r k E r k i r kr i core Hi θi θi Hi ε1 > ε2 z Hr cladding Evanescent wave ε2 µo One can have a guided wave that is bouncing between two dielectric interfaces due to total internal reflection and moving in the z-direction ECE 303 – Fall 2005 – Farhan Rana – Cornell University 2 Dielectric Slab Waveguides W 2d Assumption: W >> d x cladding y core cladding z ECE 303 – Fall 2005 – Farhan Rana – Cornell University Dielectric Vs Metal Waveguides m = 2 ε µo m = 1 E z y Ey Metal Waveguides (modes are tightly confined) ε2 µo cladding Ey core z Ey ε1 µo cladding ε2 µo Dielectric Slab Waveguides (modes are loosely confined) ECE 303 – Fall 2005 – Farhan Rana – Cornell University 3 Dielectric Slab Waveguides – TE Modes: Formal Solution x ε 2 µo cladding Ey 2d core z Ey ε 1 µo cladding symmetric ε 2 µo antisymmetric The TE solutions are of the form: r r ⎧cos(kx x )⎫ − j k z E()r = yˆ E ⎨ ⎬ e z x <d o sin()k x ⎩ x ⎭ The “sine” and “cosine” represent r E()rr = yˆ E e−α x ()x −d e− j kz z the symmetric and antisymmetric x >d 1 solutions w.r.t. the z-axis + r r ⎧ ⎫ +α x ()x +d − j kz z E()r = ⎨ ⎬yˆ E1 e e x <−d ⎩−⎭ Where: k2 + k 2 = ω2 µ ε z x o 1 Given a frequency ω, the values of kz , kx , and α are still not known 2 2 2 x kz − α x = ω µo ε2 ECE 303 – Fall 2005 – Farhan Rana – Cornell University TE Modes: Boundary Conditions x ε 2 µo cladding Ey 2d core z Ey ε 1 µo cladding ε 2 µo Boundary conditions: (1) At x =± d the component of E-field parallel to the interface (i.e. the y-component) is continuous for all z ⎧cos()kx d ⎫ ⇒ Eo ⎨ ⎬ = E1 (1) ⎩ sin()kxd ⎭ (2) At x =± d the component of H-field parallel to the interface (i.e. the z-component) is continuous for all z ⎧− kx sin()kx d ⎫ ⇒ Eo ⎨ ⎬ = −αxE1 (2) ⎩ kx cos()kxd ⎭ ECE 303 – Fall 2005 – Farhan Rana – Cornell University 4 TE Modes: Transcendental Equation x ε 2 µo cladding Ey 2d core z Ey ε 1 µo cladding ε 2 µo Dividing (2) by (1) on the previous slide gives: ⎧ tan()kx d ⎫ α ⎨ ⎬ = x ⎩− cot()kxd ⎭ kx But: 2 2 2 kz + kx = ω µo ε1 2 2 2 α x + kx = ω µo (ε1 − ε2 ) 2 2 2 kz − α x = ω µo ε2 So we finally get: 2 Transcendental equation that can ⎧ tan()kx d ⎫ ω µo ()ε1 − ε2 ⎨ ⎬ = − 1 be used to solve for k in terms of − cot()k d 2 x ⎩ x ⎭ kx the frequency ω ECE 303 – Fall 2005 – Farhan Rana – Cornell University TE Modes: Graphical Solution x ε 2 µo cladding Ey 2d core z Ey ε 1 µo cladding ε 2 µo Graphic solution of the transcendental equation Different red curves for Increasing ω values 2 2 ⎧ tan()kx d ⎫ ω µo ()ε1 − ε2 d ⎨ ⎬ = 2 − 1 ⎩− cot()kxd ⎭ ()kxd LHS RHS For the m-th TE mode (TE mode) m 0 π π 3π 2π 5π the value of kx is in the range kxd (depending on the frequency ω): 2 2 2 π π ()m − 1 ≤ k d ≤ m 2 x 2 m = 1,2,3,KK ECE 303 – Fall 2005 – Farhan Rana – Cornell University 5 TE Modes: Cut-off Frequencies x ε 2 µo cladding Ey 2d core z Ey ε 1 µo cladding ε 2 µo 2 2 Different red curves for Increasing ω values ⎧ tan()kx d ⎫ ω µo ()ε1 − ε2 d ⎨ ⎬ = 2 − 1 ⎩− cot()kxd ⎭ ()kxd LHS RHS Cut-off frequency of the m-th TE mode can be obtained by setting the RHS equal to zero for kx d = (m-1)π/2 0 π π 3π 2π 5π kxd 2 2 2 ()m − 1 π 1 ωm = 2d µo ()ε1 − ε2 m = 1,2,3,KK ECE 303 – Fall 2005 – Farhan Rana – Cornell University Dielectricx Waveguides – What is Cut-off ? ε 2 µ o cladding kz Ei E ε 1 µ o r i r k E r k 2d i r k r i core H θ θ H θ k i i i i z i x Hr ω µo ε1 cladding ε 1 > ε 2 ε 2 µ o So what does “cut-off” really mean? It means that the wave is no longer being guided through total internal reflection since θi < θc A wave will not be guided if: For the m-th TE mode (TEm mode) the smallest value of kx is: θi < θc ⇒ sin()θi < sin(θc ) = ε2 ε1 π ()m − 1 kz 2d ⇒ < ε2 ε1 So TE mode will not be guided if: ω µo ε1 m kx ⇒ kz < ω µo ε2 ω < µo ()ε1 − ε2 ()m−1 π 2 2 kx = ⇒ ω µo ε1 − kx < ω µo ε2 2d m − 1 π 1 kx ( ) ⇒ ω < ⇒ ωm = 2d µ ε − ε µo ()ε1 − ε2 o ()1 2 ECE 303 – Fall 2005 – Farhan Rana – Cornell University 6 TE Modes: Near Cut-off Behavior ε2 µo cladding Ey Different red curves for core z ε1 µo increasing ω values cladding ε2 µo ω >> ω2 (TE2 mode well confined in the core) ε2 µo 0 π π 3π kxd cladding 2 2 Ey core z ε1 µo cladding ε2 µo ω >≈ ω2 (TE2 mode near cut-off – mode not well confined in the core) ECE 303 – Fall 2005 – Farhan Rana – Cornell University TE Modes: Dispersion Curves x ε 2 µo cladding Ey 2d core z Ey ε 1 µo cladding ε 2 µo How does one obtain dispersion curves? kz TE3 mode dispersion relation k = ω µ ε (1) For a given frequency ω find kx using: z o 1 2 2 TE2 mode ⎧ tan()kx d ⎫ ω µo ()ε1 − ε2 d dispersion relation ⎨ ⎬ = 2 − 1 ⎩− cot()kxd ⎭ ()kxd kz = ω µo ε2 (2) Then find kz using: 2 2 TE mode kz = ω µo ε1 − kx 1 dispersion relation ω ω 1 ω 2 ω 3 ECE 303 – Fall 2005 – Farhan Rana – Cornell University 7 TM Modes: Formal Solution x ε 2 µo cladding Hy 2d core z Hy ε 1 µo cladding ε 2 µo The TM solutions are of the form: r ⎧cos()k x ⎫ H()rr = yˆ H x e− j kz z x <d o ⎨ ⎬ ⎩ sin()kx x ⎭ The “sine” and “cosine” represent r r −α x ()x −d − j kz z the symmetric and antisymmetric H()r = yˆ H1e e x>d solutions w.r.t. the z-axis + r r ⎧ ⎫ +α x ()x +d − j kz z H()r = ⎨ ⎬yˆ H1e e x<−d ⎩−⎭ Where: k2 + k 2 = ω2 µ ε z x o 1 Given a frequency ω, the values of kz , kx , and α are still not known 2 2 2 x kz − α x = ω µo ε2 ECE 303 – Fall 2005 – Farhan Rana – Cornell University TM Modes: Boundary Conditions x ε 2 µo cladding Hy 2d core z Hy ε 1 µo cladding ε 2 µo Boundary conditions: (1) At x =± d the component of H-field parallel to the interface (i.e. the y-component) is continuous for all z ⎧cos()kx d ⎫ ⇒ Ho ⎨ ⎬ = H1 (1) ⎩ sin()kxd ⎭ (2) At x =± d the component of E-field parallel to the interface (i.e. the z-component) is continuous for all z ⎧ kx ⎫ ⎪− sin()kx d ⎪ ⎪ ε1 ⎪ α x ⇒ Ho ⎨ ⎬ = − H1 (2) kx ε2 ⎪ cos()kxd ⎪ ⎩⎪ ε1 ⎭⎪ ECE 303 – Fall 2005 – Farhan Rana – Cornell University 8 TM Modes: Transcendental Equation x ε 2 µo cladding Hy 2d core z Hy ε 1 µo cladding ε 2 µo Dividing (2) by (1) on the previous slide gives: ⎧ tan()kx d ⎫ α ε ⎨ ⎬ = x 1 ⎩− cot()kxd ⎭ kx ε2 But: 2 2 2 kz + kx = ω µo ε1 2 2 2 α x + kx = ω µo (ε1 − ε2 ) 2 2 2 kz − α x = ω µo ε2 So we finally get: 2 2 Transcendental equation that can ⎧ tan()kx d ⎫ ε1 ω µo ()ε1 − ε2 d ⎨ ⎬ = − 1 be used to solve for k in terms of − cot()k d ε 2 x ⎩ x ⎭ 2 ()kxd the frequency ω ECE 303 – Fall 2005 – Farhan Rana – Cornell University TM Modes: Graphical Solution x ε 2 µo cladding Hy 2d core z Hy ε 1 µo cladding ε 2 µo Graphic solution of the transcendental equation Different red curves for Increasing ω values 2 2 ⎧ tan()kx d ⎫ ε1 ω µo ()ε1 − ε2 d ⎨ ⎬ = 2 − 1 ⎩− cot()kxd ⎭ ε2 ()kxd LHS RHS For the m-th TM mode (TM mode) m 0 π π 3π 2π 5π the value of kx is in the range kxd (depending on the frequency ω): 2 2 2 π π ()m − 1 ≤ k d ≤ m 2 x 2 m = 1,2,3,KK ECE 303 – Fall 2005 – Farhan Rana – Cornell University 9 Fiber Optical Communications: Optical Fibers cladding 9.0 µm core z 125 µm cladding cladding core z Silica (SiO2) core and cladding materials ECE 303 – Fall 2005 – Farhan Rana – Cornell University Integrated Optics 2 um An optical micro-ring filter (separates out An optical micro-splitter (splits light two light of a particular color) – SEM ways) – SEM Slab Waveguide Si Si SiO2 SiO2 Si Si ECE 303 – Fall 2005 – Farhan Rana – Cornell University 10 Integrated Optics: Semiconductor Quantum Well Lasers top metal InP/InGaAsP Waveguide 3 .0 µm 1 .0 µm thick polyimide layer A microchip containing several semiconductor laser stripes running in parallel is shown.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    11 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us