Interactions Between UHE Particles and Protogalaxy Environments

Interactions Between UHE Particles and Protogalaxy Environments

Interactions between UHE Particles and Protogalaxy Environments Ellis Owen Mullard Space Science Laboratory University College London United Kingdom E-mail: [email protected] Kinwah Wu, Idunn Jacobsen, Pooja Surajbali Image Credit: NASA - Adolf Schaller Hubble gallery Artist’s impression of protogalaxies HEPP/APP University of Sussex, Brighton, United Kingdom, March 2016 Outline 1. UHE Particles in Protogalaxies 2. Protogalaxy Environments 3. Interaction Mechanisms & Losses 4. Energy Deposition Lengths & ISM/IGM Heating 2 Ultra High-Energy Particles in Protogalaxies • Cosmic Rays (CRs) accelerated in high energy astrophysical environments – Supernovae explosions / shocks – Accretion • Particle energy distribution follows power law, peaks around ~10 GeV for galactic (stellar) contribution • Expected to be present in young starburst galaxies (protogalaxies) – High star formation rate (SFR) ~1000 times more than cosmic average – Rate of supernovae roughly follows SFR – Cosmic ray flux attributed to stellar sources roughly follows supernova rate 3 102 2 101 10 Protogalaxy Environment 3 − 0 Density Fields 10 101 King radius • King model 102 3 1 − 10− 101 100 ParameterMatter Value Density/cm 3 − rt 2kpc 100 r 1kpc2 K 10− 1 10− 3 Matter Density/cm 1 n0 10 cm− 10− 2 10− Matter Density/cm 3 • Red line at King radius,10− 1kpc 3 10 3 2 1 0 1 − 3 2 1 0 1 10− 1010− − 10− 1010− 10 1010 10 – Approximate radius of a Radius/kpc 2 Radius/kpc protogalaxy (e.g. from high z 10− LAE observations) 4 10 3 − 3 2 1 0 1 10− 10− 10− 10 10 Radius/kpc 102 101 Protogalaxy Environment 3 − 0 r>rgal Radiation Fields 10 7 • Uniform spherical 67 distribution of stars1 within 6 10− 1 5 protogalaxy − 1 s Matter Density/cm 5 − 2 s 2 − • High mass, low metallicity − 44 – O/B type, T~30,000K 2 10− 3 – T Spectrally characterizes 3 radiation field (BB spectrum) Flux/erg cm 2 Flux/erg cm 2 • Field approximately uniform 1 3 within the protogalaxy10− radius, 3 10 2 1 0 1 then simple inverse 10square− 100 − 2 4 10− 6 8 1010 10 Radius/kpc law at r>r Radius/kpc gal 0 0 2 4 6 8 10 Radius/kpc 5 5 10− 7 10− Protogalaxy Environment9 10− 11 10− Efficiency of energy transfer Magnetic Fields 5 10− 13 10− SNe à Turbulence à B field 7 10− 15 • Two scale components:10− 5 9 1010−− 17 -3 7 – Local viscous scale, 10~10− pc 10−11 10− 10 9 19 − 10− 1113 – Turbulent forcing ~1kpc 1010−− 21 10 13 10− − 15 10− • SN driven, B follows density 15 10− 23 17 Forcing Scale, ✏ =0.1 10− 1010 17 profile −− 19 25 10− 19 Viscous Scale, ✏ =0.1 10− 10− -20 21 • Initial B field ~10 G 10− Forcing Scale, ✏ =1 21 27 23 Forcing Scale, ✏ =0.1 10− 1010−− Protogalaxy Magnetic Field Strength/G permeates protogalaxy Viscous Scale, ✏Viscous=0.1 Scale, ✏ =1 25 29 10− 23 Forcing Scale, ✏ =0.1 10− 10− Forcing Scale, ✏ =1 27 10− Forcing Scale, ✏ = 10 Protogalaxy Magnetic Field Strength/G • Stellar processes drive 25 Viscous Scale, ✏ =1 Viscous Scale, ✏ =0.1 31 29 1010−− 10− Forcing Scale, ✏ = 10 Viscous Scale, ✏ = 10 31 Forcing Scale, ✏ =1 turbulence, which drives B 10− 27 Viscous Scale, ✏ = 10 33 10− 10− Protogalaxy Magnetic Field Strength/G 33 4 3 10− 2 1 0 1 2 3 Viscous4 Scale,5✏ =1 4 3 2 1 0 1 2 3 4 5 10− 10− 1029−10− 10− 1010− 10− 10 10 1010 10 1010 1010 10 10 10 field up to µG levels seen in 10− Age of Galaxy/Myr Forcing Scale, ✏ = 10 Age of Galaxy/Myr current epoch 31 10− Viscous Scale, ✏ = 10 10 33 – Exponential growth − 4 3 2 1 0 1 2 3 4 5 10− 10− 10− 10− 10 10 10 10 10 10 – Then linear growth of the forcing scale Age of Galaxy/Myr field after local saturation Model follows J. Schober + 2013 6 5 10− 7 10− Protogalaxy Environment9 10− 11 10− Efficiency of energy transfer Magnetic Fields 5 10− 13 10− SNe à Turbulence à B field 7 10− 15 • Two scale components:10− 5 9 1010−− 17 -3 7 – Local viscous scale, 10~10− pc 10−11 10− 10 9 19 − 10− 1113 – Turbulent forcing ~1kpc 1010−− 21 10 13 10− − 15 10− • SN driven, B follows density 15 10− 23 17 Forcing Scale, ✏ =0.1 10− 1010 17 profile −− 19 25 10− 19 Viscous Scale, ✏ =0.1 10− 10− -20 21 • Initial B field ~10 G 10− Forcing Scale, ✏ =1 21 27 23 Forcing Scale, ✏ =0.1 10− 1010−− Protogalaxy Magnetic Field Strength/G permeates protogalaxy Viscous Scale, ✏Viscous=0.1 Scale, ✏ =1 25 29 10− 23 Forcing Scale, ✏ =0.1 10− 10− Forcing Scale, ✏ =1 27 10− Forcing Scale, ✏ = 10 Protogalaxy Magnetic Field Strength/G • Stellar processes drive 25 Viscous Scale, ✏ =1 Viscous Scale, ✏ =0.1 31 29 1010−− 10− Forcing Scale, ✏ = 10 Viscous Scale, ✏ = 10 31 Forcing Scale, ✏ =1 turbulence, which drives B 10− 27 Viscous Scale, ✏ = 10 33 10− 10− Protogalaxy Magnetic Field Strength/G 33 4 3 10− 2 1 0 1 2 3 Viscous4 Scale,5✏ =1 4 3 2 1 0 1 2 3 4 5 10− 10− 1029−10− 10− 1010− 10− 10 10 1010 10 1010 1010 10 10 10 field up to µG levels seen in 10− Age of Galaxy/Myr Forcing Scale, ✏ = 10 Age of Galaxy/Myr current epoch Exponential31 growth 10− Linear growth Viscous Scale, ✏ = 10 10 33 – Exponential growth − 4 3 2 1 0 1 2 3 4 5 10− 10− Local10 −saturation10− 10 10 10 10 10 10 – Then linear growth of the forcing scale Age of Galaxy/Myr field after local saturation Model follows J. Schober + 2013 6 Interaction Mechanisms & Losses • Low energy particles – Collisions • Direct ionization • Heating • High energy particles – Proton-photon (p�) • Pion production (Photopion) • Pair production (Photopair) – Proton-proton (pp) • Pion production (Hadronuclear) 7 Interaction Mechanisms & Losses Photopion (��) Interaction 0 + p + ⇡ p +2γ + pion multiplicities at p + γ ∆ ! higher energies ! ! n + ⇡+ n + µ+ + ⌫ ( ! µ + Photopair (�e) Interaction n + e + ⌫e +¯⌫µ + ⌫µ + p + γ p + e + e− . ! 8 Interaction Mechanisms & Losses Hadronuclear (pp) Interaction p + p + ⇡0 p + ∆+ p + p + ⇡+ 8 ! 8 p + p > <>p + n + ⇡+ + pion multiplicities ! > at higher energies > + < ++ >n + p + ⇡ n + ∆ : + > ! (n + n + 2(⇡ ) > > :> 9 Interaction Mechanisms & Losses Hadronuclear (pp) Interaction p + p + ⇡0 p + ∆+ p + p + ⇡+ 8 ! 8 p + p > <>p + n + ⇡+ + pion multiplicities ! > at higher energies > + < ++ >n + p + ⇡ n + ∆ : + > ! (n + n + 2(⇡ ) > > :> Interactions of neutrons and photons à pion production n + γ ⇡’s ! 9 Interaction Mechanisms & Losses Hadronuclear (pp) Interaction p + p + ⇡0 p + ∆+ p + p + ⇡+ 8 ! 8 p + p > <>p + n + ⇡+ + pion multiplicities ! > at higher energies > + < ++ >n + p + ⇡ n + ∆ : + ! (n + n + 2(⇡ ) > > > : Pions decay to photons, muons, Interactions of neutrons and neutrinos, electrons, positrons, photons à pion production antineutrinos n + γ ⇡’s ! ⇡ γ,µ,e,⌫ ... ! 9 Cross Section/Mean Free Path � Interactions • Pair production, Bethe-Heitler 7 ✏ σ (✏ ) ↵ σ ln r process γe r ⇡ 6⇡ f T k ✓ γe ◆ – Cross Section by fitting function 10 Cross Section/Mean Free Path � Interactions • Pair production, Bethe-Heitler 7 ✏ σ (✏ ) ↵ σ ln r process γe r ⇡ 6⇡ f T k ✓ γe ◆ – Cross Section by fitting function • Photopion production – Cross section by fitting step function to data (Dermer & Menon 2009/Reimer 2007) 10 Cross Section/Mean Free Path � Interactions • Pair production, Bethe-Heitler 7 ✏ σ (✏ ) ↵ σ ln r process γe r ⇡ 6⇡ f T k ✓ γe ◆ – Cross Section by fitting function • Photopion production – Cross section by fitting step function to data (Dermer & Menon 2009/Reimer 2007) p Interactions • Hadronuclear production – Cross section by fitting to data (Kafexhiu+ 2014) 10 105 105 102 102 10 1 10 1 − UHE− Proton Loss Lengths Energy104 Deposition & IGM/ISM Heating 4 4 10− 10− Mean Free Path of UHE Protons 103 10 7 10 7 − Contributions− Magnetic Field UHE Proton Loss Lengths 104 10 2 10 5 10− 10 10− 10102 103 1010-22 2 13 10 2 13 1 10− 10 1 10− 10− 10 10-8 4 10− 101 16 16 7 10− 10− 10− 100 0 Energy Loss Mean Free Path/Mpc 10 Energy Loss Mean Free Path/Mpc 10 10− 19 Hadronuclear (p⇡) 19 1 20 13 20 10− 10− 10− 10− Seed Magnetic Field,Galactic 10 Radiation− HadronuclearG Photopion (⇡) (p⇡) Seed Magnetic10-22 Field, 10− G 1 Galactic Radiation Photopair (γe) 10 16 102 − 5 − 5 10−-2 − − SaturationEnergy10 Loss Mean Free Path/Mpc Magnetic Field, 10 G Saturation Magnetic Field, 10 G 22 CMB RadiationGalactic Photopion (⇡) Radiation Photopion22 (⇡) Energy Loss Mean Free Path/Mpc 10− 10− 19 10− 20 CMB Radiation Photopair (γe) Seed Magnetic Field, 10− G 3 No Magnetic10− Field Galactic Radiation Photopair (γe) No Magnetic Field 5 CMB Radiation Cosmological Expansion 22 Saturation Magnetic Field, 10− G 2 10− 25 10− Total 25 No Magnetic Field 10− Energy Loss Mean Free Path/Mpc CMB Radiation Photopion10− (⇡) 4 25 9 10 1110− 12 13 14 15 9 16 10 17 1110−18 12 19 13 20 14 15 16 17 18 19 20 10 10 10 109 101010 1011 101012 1013 101014 1015101016 10101710 101810101019 102010 10 109101010 101110 101012 101013 1014 101015 1016 1017 1018 101019 1020 10 10 10 CMBProton RadiationProton Energy/eV Energy/eV Photopair (γe) ProtonProton Energy/eV Energy/eV 3 Owen+(in prep) 10− CMB Radiation Cosmological Expansion • AssumeTotal products decay quickly at interaction point 4 •10− Energy of CR deposited ~at point of interaction 109 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 11 Proton Energy/eV 23 23 10− 10− 25 25 10− 10− 27 27 10− 10− 29 29 10− 10− 19 1 19 1 31 31 10− − 10− − 10− 10− s s 3 3 − − 33 Energy21 Deposition33 & IGM/ISM21 Heating 10− 10− 10− 10− 23 10− 35 35 Preliminary Estimated23 Heating Impact10− 25 23 10− 10− 10− 10− Local Scales 27 Large Scales 10− 37 37 19 10 23 10 10− − 10− − 25 29 25 1 10− 10− 1 1025− 10− − 21 10− − 1 Heating/erg cm s Heating/erg cm 31 s 39 − 10− 27 0Myr 39 s 10− 3 10 3 10 23 − 3 − 10− − − 27 33 − 10 29 27 1Myr 10 10− − 25− 10− 1 1 10− 31 10 Myr − − 10− s 41 s 41 35 3 3 10 − − 10− − 10−

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    19 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us