Numerical Cosmology & Galaxy Formation

Numerical Cosmology & Galaxy Formation

Numerical Cosmology & Galaxy Formation Lecture 1: Motivation and Historical Overview Benjamin Moster 1 About this lecture • Lecture slides will be uploaded to www.usm.lmu.de/people/moster/Lectures/NC2016.html • Exercises will be lead by Dr. Remus 1st exercise will be next week (20.04.16, 12-14, USM Hörsaal) • Goal of exercises: run your own simulations Code: Gadget-2 available at http://www.mpa-garching.mpg.de/gadget/ • Evaluation: - Exercise sheets and tutorials: 50% - Project with oral presentation (to be chosen individually): 50% 2 Numerical Cosmology & Galaxy Formation 1 13.04.2016 Literature • Textbooks: - Mo, van den Bosch, White: Galaxy Formation and Evolution, 2010 - Schneider: Extragalactic Astronomy and Cosmology, 2006 - Padmanabhan: Structure Formation in the Universe, 1993 - Hockney, Eastwood: Computer Simulation Using Particles, 1988 • Reviews: - Trenti, Hut: Gravitational N-Body Simulations, 2008 - Dolag: Simulation Techniques for Cosmological Simulations, 2008 - Klypin: Numerical Simulations in Cosmology, 2000 - Bertschinger: Simulations of Structure Formation in the Universe, 1998 3 Numerical Cosmology & Galaxy Formation 1 13.04.2016 Outline of the lecture course • Lecture 1: Motivation & Historical Overview • Lecture 2: Review of Cosmology • Lecture 3: Generating initial conditions • Lecture 4: Gravity algorithms • Lecture 5: Time integration & parallelization • Lecture 6: Hydro schemes - Grid codes • Lecture 7: Hydro schemes - Particle codes • Lecture 8: Radiative cooling, photo heating • Lecture 9: Subresolution physics • Lecture 10: Halo and subhalo finders • Lecture 11: Semi-analytic models • Lecture 12: Example simulations: cosmological box & mergers • Lecture 13: Presentations of test simulations 4 Numerical Cosmology & Galaxy Formation 1 13.04.2016 Outline of this lecture • Motivation for simulations and semi-analytic models ‣ Observations at high redshift (CMB) and low redshift (SDSS) ‣ Linear density perturbations • Historical Overview ‣ The foundations of cosmology ‣ The first simulations ‣ Simulations of Galaxy Clusters ‣ Simulations of Large-Scale Structure ‣ Properties of dark matter haloes ‣ State-of-the-art simulations of galaxies 5 Numerical Cosmology & Galaxy Formation 1 13.04.2016 Outline of this lecture • Motivation for simulations and semi-analytic models ‣ Observations at high redshift (CMB) and low redshift (SDSS) ‣ Linear density perturbations • Historical Overview ‣ The foundations of cosmology ‣ The first simulations ‣ Simulations of Galaxy Clusters ‣ Simulations of Large-Scale Structure ‣ Properties of dark matter haloes ‣ State-of-the-art simulations of galaxies 5 Numerical Cosmology & Galaxy Formation 1 13.04.2016 Observing large scale structure • Cosmic structure can be observed at very high redshift (z>1000): CMB Very smooth, only small perturbations (10-5) • At low redshift: galaxies are very clustered forming a ‘cosmic web’. z > 1000 z ~ 0 Galaxies SDSS CMB - Planck 6 Benjamin Moster Numerical Galaxy Formation & Cosmology IoA, 13.01.2016 1 Observing large scale structure • Things to keep in mind: ‣ Structure formation process is dominated by gravity ‣ Galaxies are only tracers of cosmic structure (<3% of all mass) ‣ Galaxy formation depends on ‘baryonic physics’ z > 1000 z ~ 0 Galaxies SDSS CMB - Planck 7 Benjamin Moster Numerical Galaxy Formation & Cosmology IoA, 13.01.2016 1 Observing large scale structure • Things to keep in mind: ‣ Structure formation process is dominated by gravity ‣ Galaxies are only tracers of cosmic structure (<3% of all mass) ‣ Galaxy formation depends on ‘baryonic physics’ z > 1000 z ~ 0 Galaxies How? SDSS CMB - Planck 7 Benjamin Moster Numerical Galaxy Formation & Cosmology IoA, 13.01.2016 1 What about linear perturbation theory? • How far can we push it? • A quick recap of cosmological perturbation theory: ~r = a~x ~x comoving position a˙ ~v = ~r˙ = ~u + ~r with ~u = a~x˙ ~u peculiar velocity a momentum conservation: comoving (1st order): @~v ~ ~ @~u a˙ 1 +(~v phys)~v = physφ + ~u = ~ φ @t r −r @t a −ar continuity equation: with @⇢ @ 1 ⇢ ⇢¯ + ~ (⇢~v)=0 + ~ ~u =0 δ = − @t rphys @t ar ⇢¯ Poisson equation: ~ 2 φ =4⇡G⇢ ~ 2φ =4⇡Ga2⇢¯ rphys r 8 Benjamin Moster Numerical Galaxy Formation & Cosmology IoA, 13.01.2016 1 Linear growth of structures • Combining this we get the evolution of the density contrast δ a˙ ⇢¯ δ¨ +2 δ˙ =4⇡G c δ solved by growth function D ( a ) : δ(a)=δ D(a) a a3 0 For a matter dominated universe we have D(a) a • ⇠ ˆ ~ i~k~x 3 • Can be decomposed into waves: δ(~x)= δ(k)e− d k Power spectrum is P ( k )= δˆ ( k ) 2 (whereZ : ensemble average) h| | i hi 2 and it grows like P (k)=P0D (a) Formalism works as long as δ 1 • ⌧ Breaks down when δ 1 (negative densities) • ⇠ • Either go to higher order (still no ‘baryonic physics’) or use simulations 9 Benjamin Moster Numerical Galaxy Formation & Cosmology IoA, 13.01.2016 1 From high to low redshift • Cosmological model + initial conditions + simulation code = galaxies Dark matter Galaxies 10 Benjamin Moster Numerical Galaxy Formation & Cosmology IoA, 13.01.2016 1 Outline of this lecture • Motivation for simulations and semi-analytic models ‣ Observations at high redshift (CMB) and low redshift (SDSS) ‣ Linear density perturbations • Historical Overview ‣ The foundations of cosmology ‣ The first simulations ‣ Simulations of Galaxy Clusters ‣ Simulations of Large-Scale Structure ‣ Properties of dark matter haloes ‣ State-of-the-art simulations of galaxies 11 Numerical Cosmology & Galaxy Formation 1 13.04.2016 The foundations of cosmology • 1905: Special Relativity Gµ⌫ =8⇡GTµ⌫ • 1915: General Relativity Albert Einstein • 1916: Slipher ➙ Local galaxies are receding from us • 1922: GR + Cosmological principle ➙ Friedmann equations Vesto Slipher a˙ 2 H2 = a ✓ ◆ 8⇡G kc2 ⇤ = ⇢ + 3 − a2 3 Alexander Friedmann 12 Numerical Cosmology & Galaxy Formation 1 13.04.2016 The foundations of cosmology • 1927: Lemaître ➙ Expansion of the Universe 1929: Hubble ➙ Velocity-Distance Relation (Big Bang?) • George Lemaître • 1933: Zwicky uses virial theorem for Coma Cluster ➙ Dark Matter Edwin Hubble Fritz Zwicky 13 Numerical Cosmology & Galaxy Formation 1 13.04.2016 1941 Erik Holmberg 14 Numerical Cosmology & Galaxy Formation 1 13.04.2016 1941 Erik Holmberg 14 Numerical Cosmology & Galaxy Formation 1 13.04.2016 1941 Erik Holmberg 14 Numerical Cosmology & Galaxy Formation 1 13.04.2016 1941 The first ‘simulations’ N = 2 x 37 • Experiment replaces gravity by light (same 1/r2 law) • Galaxies move closer to each other and merge • Formation of tidal arms Erik Holmberg • Gravity for each body: ¨ mi~ri = F~ (~ri) • For brute-force approach: summation over (N-1) particles ~ ~ri ~rj F (~ri)= Gmimj − 3 − (ri rj) i=j X6 − for all N particles ➙ number of operations ∝N (N-1) ∝N2 15 Numerical Cosmology & Galaxy Formation 1 13.04.2016 1963 Sverre Aarseth 16 Numerical Cosmology & Galaxy Formation 1 13.04.2016 1963 Sverre Aarseth 16 Numerical Cosmology & Galaxy Formation 1 13.04.2016 1963 Sverre Aarseth 16 Numerical Cosmology & Galaxy Formation 1 13.04.2016 1963 One of the first N-body codes N = 25-100 • One of the first studies to apply an N-body code to galaxy clusters Groundworks for all particle codes • Sverre Aarseth • Nbody6 / Nbody7 is still one of the most prominent codes used for stellar clusters 17 Numerical Cosmology & Galaxy Formation 1 13.04.2016 1963 One of the first N-body codes N = 25-100 Sverre Aarseth 18 Numerical Cosmology & Galaxy Formation 1 13.04.2016 1963 One of the first N-body codes N = 25-100 Sverre Aarseth Wang+16 18 Numerical Cosmology & Galaxy Formation 1 13.04.2016 1970 Jim Peebles 19 Numerical Cosmology & Galaxy Formation 1 13.04.2016 1970 Jim Peebles 19 Numerical Cosmology & Galaxy Formation 1 13.04.2016 1970 Jim Peebles 19 Numerical Cosmology & Galaxy Formation 1 13.04.2016 1970 Simulations with more particles N = 300 • Similar approach as Aarseth, but with more particles • Coma cluster is compared to results of computer model • Observed features are found consistent Jim Peebles 20 Numerical Cosmology & Galaxy Formation 1 13.04.2016 1972 Alar Toomre Juri Toomre 21 Numerical Cosmology & Galaxy Formation 1 13.04.2016 1972 Alar Toomre Juri Toomre 21 Numerical Cosmology & Galaxy Formation 1 13.04.2016 1972 Alar Toomre Juri Toomre 21 Numerical Cosmology & Galaxy Formation 1 13.04.2016 1972 Toomre & Toomre galaxy merger N = 120 • Restricted three-body equation of motions • Binary mergers of galaxies • Explains formation of tidal arms Alar Toomre (e.g. Antennae Galaxies) Juri Toomre 22 Numerical Cosmology & Galaxy Formation 1 13.04.2016 1974 William Press Paul Schechter 23 Numerical Cosmology & Galaxy Formation 1 13.04.2016 1974 William Press Paul Schechter 23 Numerical Cosmology & Galaxy Formation 1 13.04.2016 1974 William Press Paul Schechter 23 Numerical Cosmology & Galaxy Formation 1 13.04.2016 1974 Press & Schechter Theory N = 1000 • Analytic Theory to predict number of object with certain mass in given volume • Growth of density perturbations leads to collapse William Press • Mass fraction in objects above M is related to fraction of volume samples for which the smoothed density fluctuations are above some density threshold Theory tested with numerical N-body simulations • Paul Schechter in an expanding Universe 24 Numerical Cosmology & Galaxy Formation 1 13.04.2016 1974 Press & Schechter Theory N = 1000 • Excellent agreement of theory even with today’s state-of-the-art simulations William Press Paul Schechter 25 Numerical Cosmology & Galaxy Formation 1 13.04.2016 1974 Press & Schechter Theory N = 1000 • One of

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    111 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us