
<p>Strategies to support the COVID-19 response in LMICs </p><p>A virtual seminar series </p><p>Therapeutics Landscape for COVID-19 </p><p>Natasha Mubeen Chida, MD MSPH Associate Program Director, Infectious Disease Fellowship Program Assistant Professor, Division of Infectious Diseases Johns Hopkins University School of Medicine </p><p>Objectives </p><p>•ꢀ Review biological plausibility of Remdesivir for SARS-CoV-2 treatment •ꢀ Review clinical data on Remdesivir •ꢀ Review biological plausibility of Hydroxychloroquine for SARS-CoV-2 treatment </p><p>•ꢀ Review clinical data on Hydroxychloroquine •ꢀ Discuss cytokine release syndrome in COVID-19 •ꢀ Discuss use of anti IL-6 blockade for management of CRS •ꢀ State ongoing clinical trials for Remdesivir, hydroxychloroquine, IL-6 blockade </p><p>Sample of COVID-19 Therapeutic Landscape </p><p><strong>Antivirals </strong></p><p><strong>Baloxavir </strong></p><p><strong>Immune Modulators </strong></p><p><strong>Anakinra </strong></p><p><strong>Other </strong></p><p><strong>ACEI/ARB </strong><br><strong>Chloroquine/Hydroxychloroquine </strong><br><strong>DAS-181 </strong><br><strong>Convalescent Plasma </strong><br><strong>Corticosteroids </strong><br><strong>IVIG </strong><br><strong>Ascorbic Acid Azithromycin Epoprostenol Indomethacin </strong><br><strong>Ivermectin Niclosamide Nitazoxanide </strong><br><strong>Statins </strong><br><strong>Favipiravir </strong></p><ul style="display: flex;"><li style="flex:1"><strong>Interferon </strong></li><li style="flex:1"><strong>Lenzilumab </strong></li></ul><p></p><ul style="display: flex;"><li style="flex:1"><strong>Ruxolitinib </strong></li><li style="flex:1"><strong>Lopinavir/Ritonavir </strong></li></ul><p><strong>Neuraminidase inhibitors </strong><br><strong>Remdesivir </strong><br><strong>Sarilumab Sirolimus </strong></p><ul style="display: flex;"><li style="flex:1"><strong>Ribavarin </strong></li><li style="flex:1"><strong>Tocilizumab </strong></li></ul><p></p><ul style="display: flex;"><li style="flex:1"><strong>Acalabrutinib </strong></li><li style="flex:1"><strong>Umifenovir </strong></li></ul><p></p><p>SARS-CoV-2 </p><p>Liu C, et al. ACS Cent Sci. doi: 10.1021/acscentsci.0c00272 (2020). Jiang S, Hillyer C, Du L. Trends Immunol doi: 10.1016/j.it.2020.03.007 (2020). </p><p>“Antivirals” <br>Remdesivir </p><p>•ꢀ 2013 Ebola outbreak </p><p>•ꢀ CDC/USAMRIDD/Gilead Sciences identified nucleoside lead à prodrug, RDV </p><p>•ꢀ Metabolized to active form, adenosine nucleoside analog </p><p>•ꢀ Interferes with RNA polymerase </p><p>•ꢀ Evades viral exoribonuclease proofreading •ꢀ Decrease in RNA production </p><p>•ꢀ In cell/animal models efficacious in MERS-CoV, <br>SARS-CoV, Marburg, Nipah, more <br>•ꢀ IV formulation </p><p><strong>Remdesivir </strong></p><p>Warren TK, et al. Nature. 2016;531(7594):381-5. Sheahan TP, et al. Sci Transl Med. 2017;9(396). </p><p>Remdesivir </p><p>•ꢀ Clinical trials •ꢀ Compassionate use: pregnant women/children •ꢀ Expanded access protocol </p><p></p><ul style="display: flex;"><li style="flex:1">Remdesivir Clinical Trials: Examples </li><li style="flex:1">Remdesivir Clinical Data </li></ul><p></p><p>•ꢀ Report of patients Jan- <br>March-61 patients à 53 </p><p>•ꢀ 40 (75%) received the full 10-day course of Remdesivir </p><p>•ꢀ 34 (64%) ventilated at baseline </p><p>•ꢀ Median duration of ventilation prior to Remdesivir 2 days [IQR 1-8] </p><p>Grein J, et al. N Engl J Med. doi: 10.1056/NEJMoa2007016 (2020). </p><p>Remdesivir Clinical Data </p><p>•ꢀ 18 days </p><p>•ꢀ 36 (68%) showed improvement in oxygen support •ꢀ 57% ventilated patients extubated </p><p>•ꢀ Most recent follow up </p><p>•ꢀ 25 (47%) discharged •ꢀ 7 (13%) died </p><p>•ꢀ 6 (18%) of those ventilated, 1(5%) not ventilated </p><p>Grein J, et al. N Engl J Med. doi: 10.1056/NEJMoa2007016 (2020). </p><p>Remdesivir Clinical Data </p><p>•ꢀ 23% serious adverse events </p><p>Grein J, et al. N Engl J Med. doi: 10.1056/NEJMoa2007016 (2020). </p><p>Lopinavir/Ritonavir </p><p>•ꢀ In-vitro activity against SARs-CoV, MERS-CoV </p><p>•ꢀ Hypothesis: inhibition of SARs/MERS protease </p><p>•ꢀ Benefit in retrospective studies in SARs-CoV </p><p>•ꢀ Some in vitro data SARS-CoV-2, but EC50 much higher than levels reached in HIV dosing </p><p>•ꢀ HIV protease different protease family </p><p><strong>Lopinavir/ritonavir </strong></p><p>•ꢀ Optimized to fit in a specific part of the catalytic site of HIV protease, absent in coronaviruses <br>•ꢀ Some benefit in animal studies MERS-CoV </p><p>•ꢀ Widely used in China </p><p>•ꢀ Numerous retrospective studies </p><p>Li G, De Clercq E. Nat Rev Drug Discov. 2020;19(3):149-150., Yao TT, et al. J Med Virol. doi: 10.1002/jmv.2572 (2020)., Jiang S, Hillyer C, Du L. Trends Immunol doi: 10.1016/j.it.2020.03.007 (2020)., Choy KT et </p><p>al. Antiviral Res. doi: 10.1016/j.antiviral.2020.104786 (2020). </p><p>Lopinavir/ritonavir Data </p><p>•ꢀ Post hoc analysis suggesting early treatment may be efficacious </p><p>Cao B, et al. N Engl J Med. doi: 10.1056/NEJMoa2001282 (2020). , Ye XT, et al. Eur Rev Med Pharmacol Sci. 2020;24(6):3390-339 </p><p>Lopinavir/ritonavir Clinical Trials: Examples </p><p>Clinicaltrials.gov </p><p>Chloroquine Mechanisms Against SARS-CoV-2 </p><p>•ꢀ Blocks viral infection by increasing endosomal pH required for viruscell fusion </p><p>•ꢀ Interferes with glycosylation of <br>SARS-CoV cellular receptors </p><p>•ꢀ Chloroquine interferes with entry and post-entry stages of SARS- CoV-2 infection in Vero E6 cells </p><p>Slide courtesy Michael Melia, MD </p><p>Wang M et al. Cell Research (2020) 30:269–271; <a href="/goto?url=https://doi.org/10.1038/s41422-020-0282-0" target="_blank">https://doi.org/10.1038/s41422-020-0282-0</a>. Vincent MJ et al. Virol J. 2005 Aug 22;2:69. </p><p>Chloroquine Mechanisms Against SARS- CoV-2 </p><p>•ꢀ Vero E6 cells infected with SARS- <br>CoV-2 at MOI 0.05 </p><p>•ꢀ Efficacy evaluated by quantification of viral copy numbers in cell supernatant by RT-PCR, confirmed with visualization of virus nucleoprotein expression through immunofluorescence microscopy at 48h post-infection </p><p>•ꢀ EC90 = 6.90 μM (clinically achievable) </p><p>Slide courtesy Michael Melia, MD </p><p><a href="/goto?url=https://doi.org/10.1038/s41422-020-0282-0" target="_blank">Wang M et al. Cell Research (2020) 30:269–271; https://doi.org/10.1038/s41422-020-0282-0. </a></p><p>CQ versus HCQ in vitro </p><p>•ꢀ Cytotoxicity in VeroE6 cells measured •ꢀ HCQ less potent than CQ at some MOI </p><p>Slide courtesy Michael Melia, MD </p><p><a href="/goto?url=https://doi.org/10.1038/s41421-020-0156-0" target="_blank">Liu J et al. Cell Discovery ( 2020) 6:16. https://doi.org/10.1038/s41421-020-0156-0 </a></p><p>Hydroxychloroquine Clinical Data (Preprint) </p><p>•ꢀ Retinal disease •ꢀ Heart block </p><p>•ꢀ Randomized, parallel-group trial •ꢀ Inclusion criteria: </p><p>•ꢀ Severe liver disease, including AST <br>•ꢀ Age ≥18y <br>>2x ULN </p><p>•ꢀ SARS-CoV-2 RT-PCR positive </p><p>•ꢀ Chest CT with pneumonia <br>•ꢀ Pregnant or breastfeeding •ꢀ eGFR ≤30 or RRT <br>•ꢀ SaO2:SpO2 >93% or PaO2:FiO2 </p><p>>300 mm Hg </p><p>•ꢀ Exclusion criteria: </p><p>•ꢀ Severe, critical illness </p><p>Slide courtesy Michael Melia, MD </p><p><a href="/goto?url=https://doi.org/10.1101/2020.03.22.20040758" target="_blank">Chen Z. medRxiv preprint doi: https://doi.org/10.1101/2020.03.22.20040758 </a></p><p>Hydroxychloroquine Clinical Data (Preprint) </p><p></p><ul style="display: flex;"><li style="flex:1">•ꢀ 62 patients </li><li style="flex:1">•ꢀ Outcomes </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">•ꢀ 47% men </li><li style="flex:1">•ꢀ Time to clinical recovery = afebrile </li></ul><p>and cough relief ≥72h </p><p>•ꢀ Chest CT d0 vs d6 <br>•ꢀ Mean age 44.7y ±15.3 </p><p>•ꢀ All received standard therapy </p><p>•ꢀ Oxygen <br>•ꢀ Initially planned PCR and T-cell recovery data not reported <br>•ꢀ Antiviral and antibacterial agents </p><p>•ꢀ Immunoglobulin ± corticosteroids </p><p>•ꢀ HCQ: 9 no fever, 9 no cough •ꢀ Control: 14 no fever, 16 no cough <br>•ꢀ Randomization to HCQ 200 mg </p><p>BID x5d vs standard treatment </p><p>Slide courtesy Michael Melia, MD </p><p><a href="/goto?url=https://doi.org/10.1101/2020.03.22.20040758" target="_blank">Chen Z. medRxiv preprint doi: https://doi.org/10.1101/2020.03.22.20040758 </a></p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages48 Page
-
File Size-