The Sensitivity of the Advanced LIGO Detectors at the Beginning of Gravitational Wave Astronomy

The Sensitivity of the Advanced LIGO Detectors at the Beginning of Gravitational Wave Astronomy

The Sensitivity of the Advanced LIGO Detectors at the Beginning of Gravitational Wave Astronomy D. V. Martynov,1 E. D. Hall,1 B. P. Abbott,1 R. Abbott,1 T. D. Abbott,2 C. Adams,3 R. X. Adhikari,1 R. A. Anderson,1 S. B. Anderson,1 K. Arai,1 M. A. Arain,4 S. M. Aston,3 L. Austin,1 S. W. Ballmer,5 M. Barbet,4 D. Barker,6 B. Barr,7 L. Barsotti,8 J. Bartlett,6 M. A. Barton,6 I. Bartos,9 J. C. Batch,6 A. S. Bell,7 I. Belopolski,9 J. Bergman,6 J. Betzwieser,3 G. Billingsley,1 J. Birch,3 S. Biscans,8 C. Biwer,5 E. Black,1 C. D. Blair,10C. Bogan,11 C. Bond,34;36 R. Bork,1 D. O. Bridges,3 A. F. Brooks,1 D. D. Brown,34;22 L. Carbone,34 C. Celerier,12 G. Ciani,4 F. Clara,6 D. Cook,6 S. T. Countryman,9 M. J. Cowart,3 D. C. Coyne,1 A. Cumming,7 L. Cunningham,7 M. Damjanic,11 R. Dannenberg,1 K. Danzmann,13;11 C. F. Da Silva Costa,4 E. J. Daw,14 D. DeBra,12 R. T. DeRosa,3 R. DeSalvo,15 K. L. Dooley,16 S. Doravari,3 J. C. Driggers,6 S. E. Dwyer,6 A. Effler,3 T. Etzel,1 M. Evans,8 T. M. Evans,3 M. Factourovich,9 H. Fair,5 D. Feldbaum,4;3 R. P. Fisher,5 S. Foley,8 M. Frede,11 A. Freise,34 P. Fritschel,8 V. V. Frolov,3 P. Fulda,4 M. Fyffe,3 V. Galdi,15 J. A. Giaime,2;3 K. D. Giardina,3 J. R. Gleason,4 R. Goetz,4 S. Gras,8 C. Gray,6 R. J. S. Greenhalgh,17 H. Grote,11 C. J. Guido,3 K. E. Gushwa,1 E. K. Gustafson,1 R. Gustafson,18 G. Hammond,7 J. Hanks,6 J. Hanson,3 T. Hardwick,2G. M. Harry,19 K. Haughian,7 J. Heefner∗,1 M. C. Heintze,3 A. W. Heptonstall,1 D. Hoak,20 J. Hough,7 A. Ivanov,1 K. Izumi,6 M. Jacobson,1 E. James,1 R. Jones,7 S. Kandhasamy,16 S. Karki,21 M. Kasprzack,2 S. Kaufer,13 K. Kawabe,6 W. Kells,1 N. Kijbunchoo,6 E. J. King,22 P. J. King,6 D. L. Kinzel,3 J. S. Kissel,6 K. Kokeyama,2 W. Z. Korth,,1 G. Kuehn,11 P. Kwee,8 M. Landry,6 B. Lantz,12 A. Le Roux,3 B. M. Levine,6 J. B. Lewis,1 V. Lhuillier,6 N. A. Lockerbie,23 M. Lormand,3 M. J. Lubinski,6 A. P. Lundgren,11 T. MacDonald,12 M. MacInnis,8 D. M. Macleod,2 M. Mageswaran,1 K. Mailand,1 S. M´arka,9 Z. M´arka,9 A. S. Markosyan,12 E. Maros,1 I. W. Martin,7 R. M. Martin,4 J. N. Marx,1 K. Mason,8 T. J. Massinger,5 F. Matichard,8 N. Mavalvala,8 R. McCarthy,6 D. E. McClelland,24 S. McCormick,3 G. McIntyre,1 J. McIver,1 E. L. Merilh,6 M. S. Meyer,3 P. M. Meyers,25 J. Miller,8 R. Mittleman,8 G. Moreno,6 C. L. Mueller,4 G. Mueller,4 A. Mullavey,3 J. Munch,22 P. G. Murray,7 L. K. Nuttall,5 J. Oberling,6 J. O'Dell,17 P. Oppermann,11 Richard J. Oram,3 B. O'Reilly,3 C. Osthelder,1 D. J. Ottaway,22 H. Overmier,3 J. R. Palamos,21 H. R. Paris,12 W. Parker,3 Z. Patrick,12 A. Pele,3 S. Penn,26 M. Phelps,7 M. Pickenpack,11V. Piero,15 I. Pinto,15 J. Poeld,11 M. Principe,15 L. Prokhorov,27 O. Puncken,11 V. Quetschke,28 E. A. Quintero,1 F. J. Raab,6 H. Radkins,6 P. Raffai,29 C. R. Ramet,3 C. M. Reed,6 S. Reid,30 D. H. Reitze,1;4 N. A. Robertson,1;7 J. G. Rollins,1 V. J. Roma,21 J. H. Romie,3 S. Rowan,7 K. Ryan,6 T. Sadecki,6 E. J. Sanchez,1 V. Sandberg,6 V. Sannibale,1 R. L. Savage,6 R. M. S. Schofield,21 B. Schultz,11 P. Schwinberg,6 D. Sellers,3 A. Sevigny,6 D. A. Shaddock,24 Z. Shao,1 B. Shapiro,12 P. Shawhan,31 D. H. Shoemaker,8 D. Sigg,6 B. J. J. Slagmolen,24 J. R. Smith,32 M. R. Smith,1 N. D. Smith-Lefebvre,1 B. Sorazu,7 A. Staley,9 A. J. Stein,8 A. Stochino,1 K. A. Strain,7 R. Taylor,1 M. Thomas,3 P. Thomas,6 K. A. Thorne,3 E. Thrane,33 K. V. Tokmakov,7;37 C. I. Torrie,1 G. Traylor,3 G. Vajente,1 G. Valdes,28 A. A. van Veggel,7 M. Vargas,3 A. Vecchio,34 P. J. Veitch,22 K. Venkateswara,35 T. Vo,5 C. Vorvick,6 S. J. Waldman,8 M. Walker,2 R. L. Ward,24 J. Warner,6 B. Weaver,6 R. Weiss,8 T. Welborn,3 P. Weßels,11 C. Wilkinson,6 P. A. Willems,1 L. Williams,4 B. Willke,13;11 I. Wilmut,17 L. Winkelmann,11 C. C. Wipf,1 J. Worden,6 G. Wu,3 H. Yamamoto,1 C. C. Yancey,31 H. Yu,8 L. Zhang,1 M. E. Zucker,1;8 and J. Zweizig1 1LIGO, California Institute of Technology, Pasadena, CA 91125, USA 2Louisiana State University, Baton Rouge, LA 70803, USA 3LIGO Livingston Observatory, Livingston, LA 70754, USA 4University of Florida, Gainesville, FL 32611, USA 5Syracuse University, Syracuse, NY 13244, USA 6LIGO Hanford Observatory, Richland, WA 99352, USA 7SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom 8LIGO, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 9Columbia University, New York, NY 10027, USA 10University of Western Australia, Crawley, Western Australia 6009, Australia 11Albert-Einstein-Institut, Max-Planck-Institut f¨urGravitationsphysik, D-30167 Hannover, Germany 12Stanford University, Stanford, CA 94305, USA 13Leibniz Universit¨atHannover, D-30167 Hannover, Germany 14The University of Sheffield, Sheffield S10 2TN, United Kingdom 15University of Sannio at Benevento, I-82100 Benevento, Italy and INFN, Sezione di Napoli, I-80100 Napoli, Italy 16The University of Mississippi, University, MS 38677, USA 17Rutherford Appleton Laboratory, HSIC, Chilton, Didcot, Oxon OX11 0QX, United Kingdom 18University of Michigan, Ann Arbor, MI 48109, USA 2 19American University, Washington, D.C. 20016, USA 20University of Massachusetts-Amherst, Amherst, MA 01003, USA 21University of Oregon, Eugene, OR 97403, USA 22University of Adelaide, Adelaide, South Australia 5005, Australia 23SUPA, University of Strathclyde, Glasgow G1 1XQ, United Kingdom 24Australian National University, Canberra, Australian Capital Territory 0200, Australia 25University of Minnesota, Minneapolis, MN 55455, USA 26Hobart and William Smith Colleges, Geneva, NY 14456, USA 27Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia 28The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA 29MTA E¨otv¨osUniversity, \Lendulet" Astrophysics Research Group, Budapest 1117, Hungary 30SUPA, University of the West of Scotland, Paisley PA1 2BE, United Kingdom 31University of Maryland, College Park, MD 20742, USA 32California State University Fullerton, Fullerton, CA 92831, USA 33Monash University, Victoria 3800, Australia 34University of Birmingham, Birmingham B15 2TT, United Kingdom 35University of Washington, Seattle, WA 98195, USA (Dated: February 10, 2018) The Laser Interferometer Gravitational Wave Observatory (LIGO) consists of two widely sepa- rated 4 km laser interferometers designed to detect gravitational waves from distant astrophysical sources in the frequency range from 10 Hz to 10 kHz. The first observation run of the Advanced LIGO detectorsp started in September 2015 and ended in January 2016. A strain sensitivity of bet- ter than 10−23= Hz was achieved around 100 Hz. Understanding both the fundamental and the technical noise sources was critical for increasing the astrophsyical strain sensitivity. The average distance at which coalescing binary black hole systems with individual masses of 30 M could be detected above a signal-to-noise ratio (SNR) of 8 was 1.3 Gpc, and the range for binary neutron star inspirals was about 75 Mpc. With respect to the initial detectors, the observable volume of the Universe increased by a factor 69 and 43, respectively. These improvements helped Advanced LIGO to detect the gravitational wave signal from the binary black hole coalescence, known as GW150914. PACS numbers: 04.80.Nn, 95.55.Ym, 95.75.Kk, 07.60.Ly I. INTRODUCTION This new generation of instruments was designed to be 10 times more sensitive than initial LIGO, and promised to increase the volume of the observable universe by a The possibility of using interferometers as gravitational factor of 1000. Commissioning of the newly−installed de- wave detectors was first considered in the early 1960s [1]. tectors took place from mid 2014 to mid 2015. In Septem- In the 1970s and 1980s, long-baseline broadband laser in- ber 2015, Advanced LIGO began the era of gravitational terferometric detectors were proposed with the potential wave astronomy with its first observation run (O1), col- for an astrophysically interesting sensitivity [2,3]. Over lecting data until January 2016 [16]. This run has culmi- several decades, this vision evolved into a world-wide net- nated in the first direct detection of gravitational waves work of ground based interferometers [4{6]. These instru- from the black hole coalescence, GW150914 [17, 18]. This ments target gravitational waves produced by compact system consisted of two black holes of about 30 solar mass binary coalescences, supernovae, non-axisymmetric pul- each which merged about 400 Mpc away.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    20 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us