Appendix to Section 3: a Brief Overview of Geodetics

Appendix to Section 3: a Brief Overview of Geodetics

Appendix to Section 3: A brief overview of Geodetics MAE 5540 - Propulsion Systems Geodesy • Navigation Geeks do Calculations in Geocentric (spherical) Coordinates • Map Makers Give Surface Data in Terms !earth of Geodetic (elliptical) Coordinates • Need to have some idea how to relate one to another -- science of geodesy MAE 5540 - Propulsion Systems How Does the Earth Radius Vary with Latitude? k z ? 2 ? 2 REarth = x + y2 + z = r + z r R " Ellipse: y j ! r 2 + z 2 = 1 j 2 Req Req 1 - eEarth y x i "a" "b" r Prime Meridian ! x MAE 5540 - Propulsion Systems How Does the Earth Radius vary with Latitude? r 2 + z 2 = 1 2 Req Req 1 - eEarth ! 2 2 2 2 2 1 - eEarth r + z = Req 1 - eEarth ! z 2 2 2 2 z 2 r Req = r + 2 = r 1 + 2 1 - eEarth 1 - eEarth Rearth z " r 2 2 2 z 2 2 r = Rearth cos " r = tan " MAE 5540 - Propulsion Systems How Does the Earth Radius vary with Latitude? 2 2 Req 2 tan ! 2 = cos ! 1 + 2 = Rearth 1 - eEarth 2 2 2 1 - eEarth cos ! + sin ! 2 = 1 - eEarth Inverting .... 2 2 2 2 2 2 cos ! + sin ! - eEarth cos ! 1 - eEarth cos ! 2 = 2 1 - eEarth 1 - eEarth R earth ! = 2 Req 1 - eEarth 2 2 1 - eEarth cos ! MAE 5540 - Propulsion Systems Earth Radius vs Geocentric Latitude R earth ! = Polar Radius: 6356.75170 km 2 Req 1 - eEarth Equatorial Radius: 6378.13649 km 2 2 1 - eEarth cos ! 2 2 2 e = 1 - b = a - b = Earth a a2 6378.13649 2 6378.136492 - = 0.08181939 6378.13649 MAE 5540 - Propulsion Systems Earth Radius vs Geocentric Latitude (concluded) 6380. 6375. 6370. Radius, Km 6365. 6360. 6355. -100 -50 0 50 100 Geocentric Latitude, deg. MAE 5540 - Propulsion Systems Earth Radius … alternate formula • Earth radius as Function of Latitude MAE 5540 - Propulsion Systems What is the mean radius of the earth? RE = Req 2 ! 2 dA = " [ RE cos ( !) ] 1 - eEarth ! 2 2 1 - eEarth cos ! RE cos(!) • IAU Convention: ! Based on Earth's Volume RE d! cos (!) ! RE ! Sphere Volume: ! 3 4 " R = V 3 Emean E 2 RE cos(!) x RE d! cos (!) dV = " [ ] ! MAE 5540 - Propulsion Systems What is the Earth's Mean Radius? (continued) • Earth's (ellipsoid) Volume ! 2 V = R cos 3d = E ! E" " " -! 2 ! 2 1 - e2 3/2 R3 Earth cos3 d = eq ! 2 2 " " 1 - eEarth cos " -! 2 3 4 ! 2 R 1- e eq 3 earth MAE 5540 - Propulsion Systems What is the Earth's Mean Radius? (continued) • Based on Volume 3 Ellipsoid Volume: 4 ! 1- e2 R 3 eq 3 Sphere Volume: 4 ! R 3 sphere " R R = 1- 0.081819392 1/6 6378.13649 = 6371.0002 km sphere # mean • Mean Radius we have been using is for a Sphere with same volume as the Earth ME = $E VE "gravitational radius" MAE 5540 - Propulsion Systems Earth Radius vs Geocentric Latitude (concluded) “Gaussian Surface” 6380. 6375. 6370. Radius, Km 6365. 6360. 6355. -100 -50 0 50 100 Geocentric Latitude, deg. MAE 5540 - Propulsion Systems Geocentric vs Geodetic Coordinates Mean North (Celestial) Pole • Map makers Geocentric vs Geodetic C2 ooordinates define a new Req 1 - e(earth) latitude which is Mean Greenwich the angle that Meridian RE normal to the ! Earth's surface ! makes with the Geocenter R respect to the !' eq equatorial plane " Req • Geodetic latitude Equator MAE 5540 - Propulsion Systems Geocentric vs Geodetic Coordinates (contined) Mean •Since the Earth is North (Celestial) Elliptical only along the Pole z-axis ... geodetic and geocentric 2 h longitude are Req 1 - e(earth) identical Mean Greenwich Meridian RE • Altitude is an ! extension of the Geocenter ! line of latitude Req geodetic) !' " Req Equator MAE 5540 - Propulsion Systems Geocentric vs Geodetic Coordinates (contined) •Complex nonlinear Mean equations describe North (Celestial) relationship between Pole geocentric and geodetic latitude 2 h Req 1 - e(earth) Mean • Derivation requires Greenwich Meridian RE Extensive ! Knowledge of Spherical ! Trigonometry Geocenter R !' eq " Req Equator MAE 5540 - Propulsion Systems Geocentric vs Geodetic Coordinates (contined) Geocentric Cartesian Coordinates * rtarget xtarget = R' +h cos !' cos " !' h y = R' +h cos ' sin z target !' ! " 2 !' ztarget = R' 1 - e +h sin !' ! !' earth R' ' Req ! R' = !' 2 1 - e sin2 !' !' earth rtargetr * We would be here all week if I try to derive this "Radius of Curvature" Req MWAhEit m55o4re0, S- tPeprohepnu Als.i, oand S Hyasetreinmgs, Edward A., Jr., FORTRAN Program for the Analysis of Ground Based Range Tracking Data--Usage and Derivations, NASA TM 104201, December, 1992 Geocentric vs Geodetic Coordinates (contined) Geocentric Polar Coordinates r 2 2 2 target R = x + y + z target target target target h z -1 ytarget target = tan " xtarget !' ! z -1 target R' !target = tan 2 2 !' xtarget + ytarget !' rtargetr "Radius of Curvature" Req MAE 5540 - Propulsion Systems Geocentric vs Geodetic Coordinates (concluded) Inverse Relationships, non-linear no direct solution 2 2 xtarget + ytarget h = - R' cos !' !' y = tan-1 target "target xtarget ztarget 1 ' = -1 # ! target tan 2 2 R' xtarget + ytarget 1 - e2 !' earth R' + h !' target MWAhEit m55o4re0, S- tPeprohepnu Als.i, oand S Hyasetreinmgs, Edward A., Jr., FORTRAN Program for the Analysis of Ground Based Range Tracking Data--Usage and Derivations, NASA TM 104201, December, 1992 Pulling it all together • Given geodetic coordinates -- compute geocentric i) Compute geocedtric cartesian coordinates Range, runway threshholds, radar antennae, beacon .... x = R' +h cos !' cos " target !' y = R' +h cos !' sin " target !' 2 ztarget = R' 1 - e +h sin !' !' earth Req R' = !' 2 1 - e sin2 !' MAE 5540 - Propulsion Systems earth Pulling it all together (continued) • Given geodetic coordinates -- compute geocentric ii) Compute Geocentric polar coordinates next 2 2 2 Rtarget = xtarget + ytarget + ztarget -1 ytarget target = tan ! xtarget -1 ztarget "target = tan 2 + 2 xtarget ytarget MAE 5540 - Propulsion Systems Pulling it all together (concluded) • Given geocentric (usually x,y,z) coordinates -- compute geodetic Req R' = ' 2 ! 1 - e sin2 !' GPS, INS, TLE's .... earth No explicit solution: 2 2 xtarget + ytarget requires h = - R' 1) series expansion solution, cos !' !' 2) numerical iteration, -1 ytarget 3) or a special solution "target = tan called "Ferrari's method"** xtarget z -1 target 1 !'target = tan # x 2 + y 2 R' target target 1 - e2 !' earth R' + h !' target **NASA Technical Paper 3430, Whitmore and Haering, FORTRAN Program forAnalyzing Ground-Based Tracking Data: Usage and Derivations, Version 6.2, 1995 MAE 5540 - Propulsion Systems Numerical Example • Edwards Air Force Base, Radar Site #34 Numerical example !' = 34.96081° " = –117.91150° h = 2563.200 ft • Find corresponding geocentric cartesian and polar coordinates MAE 5540 - Propulsion Systems Numerical Example (cont'd) • Compute Local Radius of Curvature Req R' = = !' 2 1 - e sin2 !' earth 6378.13649 km = 1 - 0.08181939 sin 34.96081 " # 2 180 6392.187109 km MAE 5540 - Propulsion Systems Numerical Example (cont'd) • Compute X and Y (geocentric) r = R' +h cos ' = target !' ! 6392.1871 + 2536.2 " 3. 048 " 10-4 cos 34.96081 " # = 180 5239.3131 km xtarget = rtarget cos $ = ytarget = rtarget sin $ = 5239.3131 km " -117.91150 " # = 5216.0074 km " sin -117.91150 " # = cos 180 180 -2452.5602 km -4629.83218 km MAE 5540 - Propulsion Systems Numerical Example (cont'd) • Compute z (geocentric) 2 ztarget = R' 1 - e +h sin !' = !' earth 6392.1871 km 0.081819392 2536.2 " 3. 048 " 10-4 sin 34.96081 " # = 1 - + 180 3638.7480 km MAE 5540 - Propulsion Systems Numerical Example (cont'd) • Compute Geocentric Polar Coordinates 2 2 2 Rtarget = 2452.5602 + 4629.83218 + 3638.7480 = 6378.94104km -1 ytarget = tan = !target xtarget 180 # -1 -4629.83218 = -117.9115° " tan -2452.5602 z -1 target = $target = tan 2 2 xtarget + ytarget 180 # -1 3638.7480 = 34.7803° " tan 5239.3131 MAE 5540 - Propulsion Systems Numerical Example (cont'd) • Compute Local Earth Radius and Geocentric Distance Above Geoid RE = Req = ! 2 1 - eEarth 2 2 1 - eEarth cos ! 6378.13649 km = 1 - 0.081819392 0.081819392 2 34.7083 " # 1 - cos 180 6364.23 km D = R - R = geoid target E! 6378.94104 - 6364.23 km = 14.7 km = 48228.25 ft MAE 5540 - Propulsion Systems Numerical Example (concluded) • Comparison Geodetic Geocentric !' = 34.96081° ! = 34.7803° " = –117.91150° " = –117.91150° h = 2563.200 ft Dgeoid = 48228.25 ft • Earth Oblateness is NOT trivial, and in the REAL World -- it must be accounted for MAE 5540 - Propulsion Systems Appendix II: Rigorous Derivation of Realizable Launch Inclination • Launch Initial Conditions North Pole Greenwich Meridian • Position: ", Latitude z #, Longitude (Inertial) Launch meridian h, Altitude Equator y Re " x Vernal Equinox !g 95 MAE 5540 - Propulsion Systems • Launch Initial Conditions North Pole Greenwich Meridian z Launch meridian • Launch Initial Conditions (Inertial Coordinates) Equator y Re " x Vernal Equinox !g Sidereal hour angle 96 MAE 5540 - Propulsion Systems Sidereal Hour Angle Ignore for now! 97 MAE 5540 - Propulsion Systems Computing the Hour Angle 98 MAE 5540 - Propulsion Systems.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    32 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us