Cauchy Integral Theorem

Cauchy Integral Theorem

Cauchy’s Theorems I Ang M.S. Augustin-Louis Cauchy October 26, 2012 1789 – 1857 References Murray R. Spiegel Complex V ariables with introduction to conformal mapping and its applications Dennis G. Zill , P. D. Shanahan A F irst Course in Complex Analysis with Applications J. H. Mathews , R. W. Howell Complex Analysis F or Mathematics and Engineerng 1 Summary • Cauchy Integral Theorem Let f be analytic in a simply connected domain D. If C is a simple closed contour that lies in D , and there is no singular point inside the contour, then ˆ f (z) dz = 0 C • Cauchy Integral Formula (For simple pole) If there is a singular point z0 inside the contour, then ˛ f(z) dz = 2πj f(z0) z − z0 • Generalized Cauchy Integral Formula (For pole with any order) ˛ f(z) 2πj (n−1) n dz = f (z0) (z − z0) (n − 1)! • Cauchy Inequality M · n! f (n)(z ) ≤ 0 rn • Gauss Mean Value Theorem ˆ 2π ( ) 1 jθ f(z0) = f z0 + re dθ 2π 0 1 2 Related Mathematics Review 2.1 Stoke’s Theorem ¨ ˛ r × F¯ · dS = F¯ · dr Σ @Σ (The proof is skipped) ¯ Consider F = (FX ;FY ;FZ ) 0 1 x^ y^ z^ B @ @ @ C r × F¯ = det B C @ @x @y @z A FX FY FZ Let FZ = 0 0 1 x^ y^ z^ B @ @ @ C r × F¯ = det B C @ @x @y @z A FX FY 0 dS =ndS ^ , for dS = dxdy , n^ =z ^ . By z^ · z^ = 1 , consider z^ component only for r × F¯ 0 1 x^ y^ z^ ( ) B @ @ @ C @F @F r × F¯ = det B C = Y − X z^ @ @x @y @z A @x @y FX FY 0 i.e. ¨ ¨ ( ) @F @F r × F¯ · dS = Y − X dxdy Σ Σ @x @y Consider the RHS (let FZ = 0) ˛ ˛ ˛ ¯ F · dr = (FX ;FY ;FZ ) · (dx; dy; dz) = FX dx + FY dy @Σ @Σ @Σ Thus ¨ ( ) ˛ @FY @FX − dxdy = FX dx + FY dy Σ @x @y @Σ 2.2 Cauchy-Reimann Condition For f(z) = u(z) + jv(z) = u(x; y) + jv(x; y) The complex derivative is f (z0 + h) − f(z0) 0 lim = f (z0) h ! 0 h h 2 C If the limit exists. 2 If the limit exists, limits along real axis should be the same the limit along imaginary axis f (z + h) − f (z ) @f (z ) 1 @f (z ) f (z + jh) − f (z ) lim 0 0 = 0 = 0 = lim 0 0 h ! 0 h @x j @y h ! 0 jh h 2 R h 2 R i.e. The Cauchy-Riemann Equation @f (z ) 1 @f (z ) 0 = 0 @x j @y Expand @ 1 @ [u (x ; y ) + jv (x ; y )] = [u (x ; y ) + jv (x ; y )] @x 0 0 0 0 j @y 0 0 0 0 Equalize real part and imaginary part 8 > @ @ < u (x ; y ) = v (x ; y ) @x 0 0 @y 0 0 > @ @ : v (x ; y ) = − u (x ; y ) @x 0 0 @y 0 0 Or simply as 8 > @u @v < = @x @y > @v @u : = − @x @y i.e. If f(z) is analytic, then it fulfill this condition 2.3 ML Inequality First, ˆ ˆ b b if g(x) ≤ f(x) , then g(x)dx ≤ f(x)dx a a This is true if sup g(x) ≤ sup f(x) inf g(x) ≤ inf f(x) Then for any function f , it is true that −|fj ≤ f ≤ jfj Then apply the inequality above , ˆ ˆ ˆ b b b − jf(x)jdx ≤ f(x)dx ≤ jf(x)jdx a a a Now is the time to show , for bounded f(z) , i.e. jf(z)j ≤ M , ˆ f(z)dz ≤ ML c 3 Pf. ´ ´ b ≤ b j j By using the a f(x)dx a f(x) dx ˆ ˆ f(z)dz ≤ jf(z)jdz c c Since f(z) si bounded, ˆ ˆ ˆ ˆ f(z)dz ≤ jf(z)jdz ≤ Mdz = M dz = ML c c c | C{z } L Therefore ˆ j f(z)dzj ≤ ML c 3 The Cauchy Theorem f(z) = u(x; y) + jv(x; y) ˛ ˛ ˛ ˛ f (z) dz = [u (x; y) + jv (x; y)] [dx + jdv] = udx − vdy + j vdx + udy C C C C 3.1 The Real Part Let FX = u (x; y) FY = −u (x; y) and consider the real part of the integral ˛ ˛ udx − vdy = FX dx + FY dy C By the Stoke’ Theorem ˛ ¨ ¨ − − − − − udx + ( v)dy = [( v)x uy] dxdy = [ vx uy] dxdy C Since the function is analytic in the region D , () the function fulfill Cauchy-Reimann Condition @v @u = − @x @y Then ¨ ¨ [−vx − uy] dxdy = [uy − uy] dxdy = 0 ´ The real part of C f(z)dz equal zero 4 3.2 The imaginary part ´ Consider the imaginary part of C f(z)dz , ˛ vdx + udy C Let FX be v(x; y) and FY be u(x; y) , and apply Stoke’s Theorem ˛ ¨ vdx + udy = (ux − vy) dxdy C @u @v As the function is analytic, so it fulfill Cauchy-Reimann Condition : = , thus the integral @x @y become zero Finally, Let f be analytic in a simply connected domain D , for the simple closed contour C that lies in D , the close contour integral equal zero ˆ f (z) dz = 0 C 4 The Cauchy Integral Formulas 4.1 Simple Pole ˛ g (z) − dz = 2πjg (z0) C z z0 Condition • z0 inside C , if z0is outside C , then the integral is just zero • g(z) is analytic in simply connected domain () domain of g(z) is simply connect closed region, and g(z) fulfill CR-Condition there Proof. Consider the diagram g(z) By concept of path deformation , the integral of z − z0 along path C is equivalent to the integral along path Cϵ that ϵ ! 0 ˛ ˛ g(z) g(z) dz = lim dz − ϵ!0 − C z z0 Cϵ z z0 The small circle inside can be expressed as jθ jz − z0j = ϵe 0 ≤ θ < 2π As the radius ϵ ! 0+ , the circle is thus jθ z − z0 = ϵe 0 ≤ θ < 2π 5 Put this back into the integral ˛ ˛ ˆ ( ) 2π jθ ( ) g(z) g(z) g z0 + ϵe jθ dz = lim dz = lim d z0 + ϵe − ϵ!0 − ϵ!0 jθ − C z z0 Cϵ z z0 0 (z0 + ϵe ) z0 ˆ ( ) ˆ 2π g z + ϵejθ 2π ( ) = lim 0 jϵejθdθ = jlim g z + ϵejθ dθ ! jθ ! 0 ϵ 0 0 ϵe ϵ 0 0 ˆ ˆ ˆ 2π h ( )i 2π 2π = j limg z + ϵejθ dθ = j g (z ) dθ = jg (z ) dθ = 2πjg (z ) ! 0 0 0 0 0 ϵ 0 0 0 ) ˛ g(z) − dz = 2πjg (z0) C z z0 4.2 Generalized Cauchy Integral Formula ˛ f (z0) 2πj (n−1) n dz = 2πj f (z0) (z − z0) (n − 1)! First, the Cauchy Integral Formula for simple pole is ˛ g (z) dz = 2πjg (z ) z − z 0 ( ) C 0 d d Take on both side Not ! dz0 ˛ dz ˛ d g (z) d g (z) 2πj dz = 2πj g (z ) ) dz = g0 (z ) − 0 2 0 dz0 C z z0 dz0 C (z − z0) 1! Repeat, ˛ ˛ d g (z) 2πj d 0 ) g (z) 2πj 2 dz = g (z0) 3 dz = g"(z0) dz0 C (z − z0) 1! dz0 C (z − z0) 2! ˛ ˛ d g (z) 2πj d g (z) 2πj ) (3) 3 dz = g"(z0) 4 dz = g (z0) dz0 C (z − z0) 1! dz0 C (z − z0) 3! Thus, the general form of Cauchy Integral Formula is ˛ g (z) 2πj (n−1) − n dz = − g (z0) C (z z0) (n 1)! This can be proved using Mathematical Induction. 6 5 Consequences of Cauchy’s Integral Formula 5.1 Cauchy Inequality The generalized Cauchy Integral Formula is ˛ f (z) 2πj (n) n+1 dz = f (z0) C (z − z0) n! Take absolute value ˛ ˛ f (z) 2πj f (z) j2πj · jjj dz = f (n) (z ) ) dz = f (n) (z ) n+1 0 n+1 j j 0 C (z − z0) n! C (z − z0) n! Rearrange ˛ ˛ n! f (z) n! f (z) (n) ≤ f (z0) = n+1 dz n+1 dz 2π C (z − z0) 2π C (z − z0) Since jθ ) − jθ ) − n+1 j n+1j · j j(n+1)θj n+1 z = z0 + re (z z0) = re (z z0) = r |e {z } = r 1 And apply ML inequality ˛ ˛ ˛ n! f (z) n! M · n! M · n! f (n) (z ) ≤ dz ≤ Mdz = dz = · 2πr 0 n+1 · n+1 · n+1 · n+1 2π C r 2π r C 2π r | C{z } 2π r 2πr Finally M · n! f (n) (z ) ≤ 0 rn 5.2 Gauss Mean Value Theorem Recall, the Cauchy Integral Formula for simple pole ˛ f (z) − dz = 2πj f (z0) C z z0 jθ jθ Rearrange, and take z = z0 + re , dz = rje dθ ˛ ˆ ( ) 1 f (z) 1 2π f z + rejθ ( ) f (z ) = dz = 0 rjejθdθ 0 − jθ 2πj C z z0 2πj 0 re Cancel out common factor ˆ 2π ( ) 1 jθ f (z0) = f z0 + re dθ 2π 0 END 7.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    7 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us