Gauss' Law in Electrostatics Short Version

Gauss' Law in Electrostatics Short Version

home physics online guide physics help my info terms of use contacts What is Physics? Gauss' Law in Electrostatics short version Mechanics SI units & Physics constants Rectilinear Kinematics Curvilinear Kinematics Rotational Kinematics Electrostatics investigates interaction between fixed electric charges Translational Dynamics Rotational Dynamics The Gauss' Law is used to find electric field when the charge is Work and Energy continuously distributed within an object with symmetrical geometry, such as Gravitation sphere, cylinder, or plane. Gauss' law follows Coulomb's law and the Noninertial Mechanics Special Relativity Superposition Principle. Fluid Mechanics Electricity and Magnetism Electric flux Electric Field Gauss' Law Consider electric field and choose mentally a plane surface of area A with about below subjects normal unit vector (with magnitude u = 1), oriented at angle with Electric Potential Capacity respect to the field as shown below Direct Current Magnetic Field Magnetic Field Laws Magnetic Interactions Electromagnetic Induction Maxwell's Equations Oscillations and Waves Let the area be so small that the electric field is uniform everywhere on it. Simple Harmonic The electric flux thorough the area A is defined as scalar product Motion Damped Harmonic Motion Driven Harmonic The above definition defines the units of electric flux as volt times meter Motion Electric Oscillation Alternating Current Now we can define the electric flux through any surface in an arbitrary Wave Motion electric field. We should subdivide this surface into n small elements each of Elastic Waves Electromagnetic Waves area , and find the electric fluxes through all elements using the above formula Optics , for Light Waves Geometrical Optics where: is the electric field at the center of ; is the angle between Interference Polarization and normal to the plane of the element. Diffraction Fraunhofer Diffraction Since electric flux is a scalar value, the total electric flux through the surface Dispersion, Absorption, Diffusion is given by the sum Doppler Effect Thermodynamics Ideal Gas Molecular Statistics Transport Phenomena Here the smaller value the more n, and the more accurate value of the First Law of electric flux is given. Thermodynamics Second and Third Laws Two important cases follows from the above formula: of Thermodynamics 1. When the electric field everywhere is parallel to the surface the electric Imperfect Gas Liquids flux through the surface is zero, since here and . Solids 2. When the electric field is perpendicular everywhere to the surface the Quantum Physics electric flux through the surface is given by Thermal Radiation Quantum Properties of Light Wave Properties of In particular, if the electric field everywhere is normal to the surface and has Particles Planetary Model of the same value E, then the formula for the electric flux is: Atom X­Rays Particle in Potential where A is the total area of the surface Well Using the electric field lines concept, let us find the obvious physical Pauli Exclusion Principle meaning of the electric flux. Putting and in formula for Nuclear Physics electric flux, we get the number of electric field lines crossing the element of Solid State Physics area Appendices Physics Constants SI units and Symbols Now putting it into electric flux, we get used Vectors Thus the net electric flux through any surface is equal numerically to the total number of electric lines, N, crossing the surface. Now consider the general case when the electric field is produced by a system of point charges Qi for i = 1,2,3,...n. Draw mentally a closed surface with area A around the charges so they all are enclosed within the surface. Such surface is called Gauss' surface. According to formula for total number of electric field lines, each charge produces number of electric lanes crossing the surface A given by for Using formula for electric flux we get that the total electric flux through the surface is Now the left and right parts in the above equation have the same units, and is the net charge enclosed within the surface. So we get the equality This equation is called Gauss' law. Thus Gauss' law states that electric flux through any closed surface is equal to the net charge enclosed inside the surface divided by permittivity of vacuum. The reader can find more rigorous proof of Gauss' law in any high level Physics book. Gauss' law is valid for any discrete set of point charges. Nevertheless, this law is also valid when an electric field is produced by charged objects with continuously distributed charges, since any continuously distributed charge is a combination of elementary point charges. Gauss' law usually is used to calculate the electric field produced by an object charged with symmetrical charge distribution. As an example, find the electric field outside the charged sphere. Consider the case when the electric field is produced by the sphere of radius R symmetrically charged by charge Q The first step of using Gauss' law is always the consideration of symmetry. Since the electric field is produced by charges, the symmetry of the field will repeat the symmetry of the charges. So the electric field of a spherically symmetrical charged sphere will also have the spherical symmetry. The electric field is directed along the radius from the center of the sphere with a magnitude defined by the magnitude of the radius. Therefore let us take Gauss' surface, A, as a sphere of radius and area concentric with the charged sphere as shown above. Now the electric field on the Gauss' sphere is normal to the surface and has the same magnitude. So according to the above formula for case 2 the net flux through the sphere is given by On the other hand, Gauss' law shows Equating these two equations gives From which we get the magnitude of the electric field outside the charged sphere at a distance r from its center This is the exact same formula as the formula for electric field which was found earlier, using Coulomb's law for electric field of point charge Q located at the center of the sphere. The important result is that Coulomb's law formulated initially for point charges can be used as well for charged spheres. Exercise: Show, using Gauss' law, that the electric field inside the sphere of radius R, uniformly charged by charge Q, at is given by Hint: Take Gauss’ surface as a sphere of radius r<R and find the enclosed charge Consider the next very important case when the electric field is produced by an infinite plane, charged uniformly by a surface charge density . The charge density is defined as the charge per unit of the plane area Here we have axial symmetry in the direction normal to the plane, and so the electric field is directed everywhere from the plane in the normal direction as shown in the above diagram (for a positively charged plane). Using this symmetry, insert Gauss’ surface as a closed cylinder with cross section A. The electric field everywhere on the lateral surface is parallel to the surface, and so according to case 1 the electric flux through the lateral surface is zero. On the faceplates the electric field is normal to the surface and has a constant value E, so according to case 2 the net electric flux through the cylinder is given by According to the definition of surface charge density, the charge enclosed within the cylinder is given by Putting and Q into Gauss' Law gives From which we get the magnitude of the electric field produced by the plane We got the important result, that an electric field near any charged plane is uniform everywhere, if the distance from the plane is small compared with the dimensions of the plane. Exercise: Show, using Gauss' law, that the electric field produced by an infinitely long straight line, uniformly charged by a linear charge density , at a distance r from the line is directed everywhere perpendicular to the line and has a magnitude given by Hint: Take Gauss’ surface as a cylinder of radius r with axis on the line and find the enclosed charge, using cylindrical symmetry Conductors in an electric field Regarding the capability of charges to move inside a substance, all substances are subdivided into two large groups: dielectrics and conductors. In dielectrics all negative and positive charges are fixed and cannot move inside the substance under the influence of usual external forces. Contrary to dielectrics, in conductors, the electrons of the outer valence shells are collectivized by all atoms of the substance due to interatomic interaction. As a result these electrons are not bounded by atoms and can freely move through entire substance under the influence of negligibly small electric forces. Consider a conductor at equilibrium placed into external electrostatic field , with free charge q inside of it One readily can see that at equilibrium all free charges will be rearranged so that the net internal electric force on the charge q is zero. Otherwise this charge will move inside the conductor, until it finds the place where . The net electric field inside the conductor is given by Thus we get, that at equilibrium the internal electric field inside the conductor is always zero. To understand how the free electrons are distributed in a conductor let us use the Gauss' law. Consider a conductor with its outer surface A charged by charge Q. Draw two Gauss’ surfaces A1 and A2 near the surface A separated by infinitely thin layer as shown below, where A1 is drawn inside the conductor and A2 outside the conductor. The electric field inside the conductor is zero. So the electric flux through A1 is zero, and according to Gauss' law the electric charge inside A1 must be zero.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    7 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us