Density Matrix Description of NMR

Density Matrix Description of NMR

Density Matrix Description of NMR BCMB/CHEM 8190 Operators in Matrix Notation • It will be important, and convenient, to express the commonly used operators in matrix form • Consider the operator Iz and the single spin functions α and β - recall ˆ ˆ ˆ ˆ ˆ ˆ Ix α = 1 2 β Ix β = 1 2α Iy α = 1 2 iβ Iy β = −1 2 iα Iz α = +1 2α Iz β = −1 2 β α α = β β =1 α β = β α = 0 - recall the expectation value for an observable Q = ψ Qˆ ψ = ∫ ψ∗Qˆψ dτ Qˆ - some operator ψ - some wavefunction - the matrix representation is the possible expectation values for the basis functions α β α ⎡ α Iˆ α α Iˆ β ⎤ ⎢ z z ⎥ ⎢ ˆ ˆ ⎥ β ⎣ β Iz α β Iz β ⎦ ⎡ α Iˆ α α Iˆ β ⎤ ⎡1 2 α α −1 2 α β ⎤ ⎡1 2 0 ⎤ ⎡1 0 ⎤ ˆ ⎢ z z ⎥ 1 Iz = = ⎢ ⎥ = ⎢ ⎥ = ⎢ ⎥ ⎢ ˆ ˆ ⎥ 1 2 β α −1 2 β β 0 −1 2 2 0 −1 ⎣ β Iz α β Iz β ⎦ ⎣⎢ ⎦⎥ ⎣ ⎦ ⎣ ⎦ • This is convenient, as the operator is just expressed as a matrix of numbers – no need to derive it again, just store it in computer Operators in Matrix Notation • The matrices for Ix, Iy,and Iz are called the Pauli spin matrices ˆ ⎡ 0 1 2⎤ 1 ⎡0 1 ⎤ ˆ ⎡0 −1 2 i⎤ 1 ⎡0 −i ⎤ ˆ ⎡1 2 0 ⎤ 1 ⎡1 0 ⎤ Ix = ⎢ ⎥ = ⎢ ⎥ Iy = ⎢ ⎥ = ⎢ ⎥ Iz = ⎢ ⎥ = ⎢ ⎥ ⎣1 2 0 ⎦ 2 ⎣1 0⎦ ⎣1 2 i 0 ⎦ 2 ⎣i 0 ⎦ ⎣ 0 −1 2⎦ 2 ⎣0 −1 ⎦ • Express α , β , α and β as 1×2 column and 2×1 row vectors ⎡1⎤ ⎡0⎤ α = ⎢ ⎥ β = ⎢ ⎥ α = [1 0] β = [0 1] ⎣0⎦ ⎣1⎦ • Using matrices, the operations of Ix, Iy, and Iz on α and β , and the orthonormality relationships, are shown below ˆ 1 ⎡0 1⎤⎡1⎤ 1 ⎡0⎤ 1 ˆ 1 ⎡0 1⎤⎡0⎤ 1 ⎡1⎤ 1 Ix α = ⎢ ⎥⎢ ⎥ = ⎢ ⎥ = β Ix β = ⎢ ⎥⎢ ⎥ = ⎢ ⎥ = α 2⎣1 0⎦⎣0⎦ 2⎣1⎦ 2 2⎣1 0⎦⎣1⎦ 2⎣0⎦ 2 ⎡1⎤ ⎡0⎤ α α = [1 0]⎢ ⎥ =1 β β = [0 1]⎢ ⎥ =1 0 1 ˆ 1 ⎡0 −i⎤⎡1⎤ 1 ⎡0⎤ 1 ˆ 1 ⎡0 −i⎤⎡0⎤ 1 ⎡−i⎤ 1 ⎣ ⎦ ⎣ ⎦ Iy α = ⎢ ⎥⎢ ⎥ = ⎢ ⎥ = i β Iy β = ⎢ ⎥⎢ ⎥ = ⎢ ⎥ = −i α 2⎣ i 0⎦⎣0⎦ 2⎣i ⎦ 2 2⎣ i 0⎦⎣1⎦ 2⎣ 0⎦ 2 ⎡0⎤ ⎡1⎤ α β = [1 0]⎢ ⎥ = 0 β α = [0 1]⎢ ⎥ = 0 ˆ 1 ⎡1 0 ⎤⎡1⎤ 1 ⎡1⎤ 1 ˆ 1 ⎡1 0 ⎤⎡0⎤ 1 ⎡ 0 ⎤ 1 ⎣1⎦ ⎣0⎦ Iz α = ⎢ ⎥⎢ ⎥ = ⎢ ⎥ = α Iz β = ⎢ ⎥⎢ ⎥ = ⎢ ⎥ = − β 2⎣0 −1⎦⎣0⎦ 2⎣0⎦ 2 2⎣0 −1⎦⎣1⎦ 2⎣−1⎦ 2 Operators in Matrix Notation • Likewise, we can express αα αβ βα ββ αα ⎡ αα Iˆ αα αα Iˆ αβ αα Iˆ βα αα Iˆ ββ ⎤ the two-spin operators in ⎢ Ax Ax Ax Ax ⎥ ⎢ ˆ ˆ ˆ ˆ ⎥ matrix form αβ αβ IAx αα αβ IAx αβ αβ IAx βα αβ IAx ββ ⎢ ⎥ - example: consider the ˆ ˆ ˆ ˆ βα ⎢ βα IAx αα βα IAx αβ βα IAx βα βα IAx ββ ⎥ expectation value for the Ix ⎢ ⎥ Iˆ Iˆ Iˆ Iˆ operator on the A spin in an ββ ⎣⎢ ββ Ax αα ββ Ax αβ ββ Ax βα ββ Ax ββ ⎦⎥ AX system in the two spin basis ˆ ˆ ˆ ˆ ˆ ˆ (recall I x α = 1 2 β I x β = 1 2 α I y α = 1 2 i β I y β = − 1 2 iα I z α = 1 2 α I z β = − 1 2 β ) ⎡1 2 αα βα 1 2 αα ββ 1 2 αα αα 1 2 αα αβ ⎤ ⎡ 0 0 1 2 0 ⎤ ⎡0 0 1 0⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 1 2 αβ βα 1 2 αβ ββ 1 2 αβ αα 1 2 αβ αβ ˆ ⎢ ⎥ ⎢ 0 0 0 1 2⎥ 1 ⎢0 0 0 1⎥ IAx = ⎢ ⎥ = = 1 2 βα βα 1 2 βα ββ 1 2 βα αα 1 2 βα αβ ⎢ 1 2 0 0 0 ⎥ 2⎢1 0 0 0⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 0 1 2 0 0 0 1 0 0 ⎣1 2 ββ βα 1 2 ββ ββ 1 2 ββ αα 1 2 ββ αβ ⎦ ⎣ ⎦ ⎣ ⎦ • The matrices for Ix, Iy,and Iz are ⎡0 0 1 0⎤ ⎡0 1 0 0⎤ ⎡0 0 −i 0⎤ ⎡0 −i 0 0⎤ ⎡1 0 0 0 ⎤ ⎡1 0 0 0 ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 1 0 0 0 1 1 1 0 0 0 1 0 0 0 −i 1 i 0 0 0 1 0 1 0 0 1 0 −1 0 0 Iˆ = ⎢ ⎥ Iˆ = ⎢ ⎥ Iˆ = ⎢ ⎥ Iˆ = ⎢ ⎥ Iˆ = ⎢ ⎥ Iˆ = ⎢ ⎥ Ax 2⎢1 0 0 0⎥ Xx 2⎢0 0 0 1⎥ Ay 2⎢i 0 0 0⎥ Xy 2⎢0 0 0 −i⎥ Az 2⎢0 0 −1 0⎥ Xz 2⎢0 0 1 0 ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣0 1 0 0⎦ ⎣0 0 1 0⎦ ⎣0 i 0 0⎦ ⎣0 0 i 0⎦ ⎣0 0 0 −1⎦ ⎣0 0 0 −1⎦ Density Matrices and Observables for an Ensemble of Spins • Expectation values give average results for an observable for a single spin or spin system - i.e. for a group of spins that all have the same wavefunction • The density matrix/operator provides an avenue for average or net behavior of an ensemble of spins • First, consider a single spin - write a wavefunction for a linear combination of the members of the basis set ( and ) α β ∗ ∗ ∗ ψ = c1 α + c2 β = ∑cjφ j ψ = c1 α + c2 β = ∑c jφ j j j • We can substitute the vector equivalents for α , β , α and β to get vector expressions for ψ and ψ ⎡1⎤ ⎡0⎤ α = ⎢ ⎥ β = ⎢ ⎥ α = [1 0] β = [0 1] ⎣0⎦ ⎣1⎦ ⎡1⎤ ⎡0⎤ ⎡c1 ⎤ ∗ ∗ ∗ ∗ ∗ ∗ ψ = c1 α + c2 β = c1 ⎢ ⎥+ c2 ⎢ ⎥ = ⎢ ⎥ ψ = c1 α + c2 β = c1 [1 0]+ c2[0 1] = [c1 c2 ] ⎣0⎦ ⎣1⎦ ⎣c2 ⎦ • So, the wavefunction (and its complex conjugate) can be written in terms of vectors of the coefficients only Density Matrices and Observables for an Ensemble of Spins • The expectation value for some observable represented by the operator Q, operating on a wavefunction ψ can be written as Q = ψ Qˆ ψ ∗ ∗ ∗ ψ = c1 α + c2 β = ∑cjφ j ψ = c1 α + c2 β = ∑c jφ j j j ⎡ ∗ ∗ ⎤ ˆ ⎡ ⎤ = ⎣c1 α + c2 β ⎦ Q ⎣c1 α + c2 β ⎦ ∗ ˆ ∗ ˆ ∗ ˆ ∗ ˆ ∗ ˆ = c1 c1 α Q α + c1 c2 α Q β + c2c1 β Q α + c2c2 β Q β = ∑c jck ψ j Q ψk j • Substitute the matrix/vector equivalents ⎡c ⎤ ˆ 1 ∗ ∗ Q = ψ Q ψ ψ = ⎢ ⎥ ψ = [c1 c2 ] ⎣c2 ⎦ ⎡ α Qˆ α α Qˆ β ⎤⎡c ⎤ ⎡c α Qˆ α + c α Qˆ β ⎤ ∗ ∗ ⎢ ⎥ 1 ∗ ∗ ⎢ 1 2 ⎥ = [c1 c2 ] ⎢ ⎥ = [c1 c2 ] ⎡ ˆ ˆ ⎤ α Qz α α Qz β ⎢ ˆ ˆ ⎥⎣c2 ⎦ ⎢ ˆ ˆ ⎥ ⎣ β Q α β Q β ⎦ ⎣c1 β Q α + c2 β Q β ⎦ Qˆ = ⎢ ⎥ ⎢ ˆ ˆ ⎥ ∗ ˆ ∗ ˆ ∗ ˆ ∗ ˆ ∗ ˆ ⎣ β Qz α β Qz β ⎦ = c1 c1 α Q α + c1 c2 α Q β + c2c1 β Q α + c2c2 β Q β = ∑c jck ψ j Q ψk j • Note the expression for Q ˆ includes products of the coefficients, rather than the coefficients themselves, suggesting a way to represent the spin state (wavefunction) in terms of the products ⎡c ⎤ ⎡c c∗ c c∗ ⎤ ψ ψ = 1 [c∗ c∗ ] = ⎢ 1 1 1 2 ⎥ - note: NOT ψ ψ = 1 ! ⎢ ⎥ 1 2 ∗ ∗ ⎣c2 ⎦ ⎣c2c1 c2c2 ⎦ Density Matrices and Observables for an Ensemble of Spins • This leads to a different way to formulate the expectation value - i.e. for a group of spins that all have the same wavefunction Qˆ = Tr{ ψ ψ Qˆ} ⎧ ∗ ∗ ⎡ ˆ ˆ ⎤⎫ ⎡ ∗ ˆ ∗ ˆ ∗ ˆ ∗ ˆ ⎤ ⎪⎡c c c c ⎤ α Q α α Q β ⎪ c1c1 α Q α + c1c2 β Q α c1c1 α Q β + c1c2 β Q β = Tr⎨⎢ 1 1 1 2 ⎥⎢ ⎥⎬ = Tr⎢ ⎥ c c∗ c c∗ ⎢ ˆ ˆ ⎥ ⎢ ∗ ˆ ∗ ˆ ∗ ˆ ∗ ˆ ⎥ ⎩⎪⎣ 2 1 2 2 ⎦⎣ β Q α β Q β ⎦⎭⎪ ⎣c2c1 α Q α + c2c2 β Q α c2c1 α Q β + c2c2 β Q β ⎦ ∗ ˆ ∗ ˆ ∗ ˆ ∗ ˆ = c1c1 α Q α + c1c2 β Q α + c2c1 α Q β + c2c2 β Q β ∗ ˆ ∗ ˆ ∗ ˆ ∗ ˆ ∗ ˆ = c1 c1 α Q α + c1 c2 α Q β + c2c1 β Q α + c2c2 β Q β = ∑c jck ψ j Q ψk j • Now….for an ensemble of spins, the magnitude of an observable is the sum of the expectation values for each spin ˆ ˆ ˆ ˆ Q = ψ1 Q ψ1 + ψ2 Q ψ2 + ψ3 Q ψ3 +....... ψN Q ψN Tr ...... Qˆ = {( ψ1 ψ1 + ψ2 ψ2 + ψ3 ψ3 + ψN ψN ) } • The average value of an observable for an ensemble is N ˆ Q = (1 N)∑ ψi Q ψi i=1 Tr ⎡ 1 N ...... ⎤Qˆ = {⎣( )( ψ1 ψ1 + ψ2 ψ2 + ψ3 ψ3 + ψN ψN )⎦ } - the overbar indicating the average over the ensemble Density Matrices and Observables for an Ensemble of Spins • To simplify this expression, we'll define the density operator ˆ ρ = (1 N)( ψ1 ψ1 + ψ2 ψ2 + ψ3 ψ3 ) +...... ψN ψN = ψ ψ • For an ensemble, the average value of the observable, and the average macroscopic observable, then are ˆ ˆ ˆ ˆ Q = Tr{ρQ} Qmacro = N Tr{ρQ} • What does this mean? - any observable can be ascertained from two spin operators - one of these represents the observable - the other represents the ensemble average of the wavefunctions (not necessary to know the wavefunctions for all N members of the ensemble) • For two non-interacting spins, the matrix representation of the density operator (density matrix) is ⎡ ∗ ∗ ⎤ ⎡ ∗ ∗ ⎤ c1c1 c1c2 ⎡ρ11 ρ12 ⎤ c1c1 c1c2 ρˆ = ψ ψ = ⎢ ⎥ = ⎢ ⎥ recall ψ ψ = ⎢ ⎥ ∗ ∗ ∗ ∗ ⎢ ⎥ ⎣ρ21 ρ22 ⎦ c c c c ⎣c2c1 c2c2 ⎦ ⎣ 2 1 2 2 ⎦ - ρ11 and ρ22 are the populations of states 1 and 2 (i.e.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    26 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us