ABSTRACT CUI, XIANG. Impact Factors of Harvesting Chlorella

ABSTRACT CUI, XIANG. Impact Factors of Harvesting Chlorella

ABSTRACT CUI, XIANG. Impact Factors of Harvesting Chlorella autotrophica with Electro- Flocculation. (Under the direction of Jay J. Cheng). Microalgae are promising feedstock for biodiesel production. However, there are still several bottlenecks before it's economically feasible. One of the issues remains in the harvesting process. Electro-Flocculation technique for recovering microalgae was investigated in this thesis. The study focused on effects of time, voltage, pH and temperature on recovery efficiency. Central Composite Design was applied to design the experiment. From experimental results, the highest recovery efficiency was achieved to be 94.3%, at the following conditions: 25 Volts, pH 7 and 25°C. Two models were developed: model one had four independent variables (time, voltage, pH and temperature), and its coefficient of determination R2 = 0.9758; model two had three independent variables (voltage, pH and temperature) and time as covariate, with coefficient of determination R2 = 0.9475. Both models suggested time was the most influencing factor; temperature had a quadratic relationship with recovery efficiency (significant at level of 0.05); and there was no evidence that pH had effect on the response (both p-values were greater than 0.6). Model two suggested there was a quadratic relationship between voltage and recovery efficiency (p- value of voltage*voltage = 0.0005), while model one didn’t have enough evidence to support (p-value = 0.1094). © Copyright 2012 by Xiang Cui All Rights Reserved Impact Factors of Harvesting Chlorella autotrophica with Electro-Flocculation (EF) by Xiang Cui A thesis submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the degree of Master of Science Biological and Agricultural Engineering Raleigh, North Carolina 2012 APPROVED BY: _______________________________ ______________________________ Jay J. Cheng Wenqiao Yuan Committee Chair ________________________________ Consuelo Arellano BIOGRAPHY Xiang Cui was born in Hangzhou, China in 1987. He graduated from Zhejiang University in 2010 with a Bachelor’s degree in Biosystems Engineering. Later he came to U.S. to continue his graduate study in North Carolina State University. His research focus was on harvesting microalgae using electro-flocculation method under Dr. Jay Cheng’s advisory. ii TABLE OF CONTENTS LIST OF TABLES .................................................................................................................... v LIST OF FIGURES ................................................................................................................. vi CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW ......................................... 1 1.1 Renewable energy solutions ............................................................................................... 1 1.2 Bioenergy: bioethanol vs. biodiesel ............................................................................... 1 1.2.1 Bioethanol ................................................................................................................... 1 1.2.2 Biodiesel ..................................................................................................................... 3 1.2.3 Biodiesel from microalgae: system mechanics ........................................................... 6 1.3 Growing microalgae ....................................................................................................... 7 1.3.1 Algae strains selection ................................................................................................ 7 1.3.2 Microalgae species growing conditions with different energy source ........................ 8 1.3.3 Light sustainability.................................................................................................... 10 1.3.4 Open ponds vs. Photobioreactors .............................................................................. 11 1.4 Harvesting methods ...................................................................................................... 13 1.4.1 Centrifugation ........................................................................................................... 13 1.4.2 Flocculation............................................................................................................... 14 1.4.3 Filtration .................................................................................................................... 16 1.4.4 Electrophoresis techniques ........................................................................................ 18 1.4.5 Comparison of different harvesting methods ............................................................ 20 1.5 Current studies of electro-flocculation process for harvesting microalgae .................. 22 1.6 Central composite design and its application in experimental design .......................... 24 1.7 Summary ...................................................................................................................... 25 Objectives ............................................................................................................................... 26 CHAPTER 2. METHODOLOGY .......................................................................................... 27 2.1 Materials ....................................................................................................................... 27 2.1.1 Microalgae strain: Chlorella autotrophica ............................................................... 27 2.1.2 Medium ..................................................................................................................... 28 2.2 Methods ........................................................................................................................ 31 2.2.1 Inoculation and multiplication of Chlorella autotrophica ........................................ 31 2.2.2 Harvesting of Chlorella autotrophica: electro-flocculation method ........................ 33 2.2.3 Analytical methods ................................................................................................... 34 2.2.4 Experimental design.................................................................................................. 35 2.2.5 Statistical analysis ..................................................................................................... 40 CHAPTER 3. IMPACT FACTORS OF HARVESTING CHLORELLA AUTOTROPHICA USING ELECTRO-FLOCCULATION ................................................................................. 41 3.1 Calibration curve between cell density and optical density of algae sample ............... 42 3.2 Effect of voltage on microalgae recovery efficiency ................................................... 43 3.3 Effect of pH on microalgae recovery efficiency .......................................................... 45 iii 3.4 Effect of temperature on microalgae recovery efficiency ............................................ 47 3.5 Application of central composite design and response surface methodology to microalgae recovery efficiency using electro-flocculation technique .................................... 49 3.5.1 Model one: Regression model of response surface with four factors and five levels51 3.5.2 Model two: Regression model of response surface with three factors and time as covariate .................................................................................................................................. 61 3.6 Conclusions and future works ...................................................................................... 71 Future works ........................................................................................................................... 72 REFERENCES ....................................................................................................................... 74 APPENDIX ............................................................................................................................. 79 SAS Code ................................................................................................................................ 80 SAS output .............................................................................................................................. 84 iv LIST OF TABLES Table 1. Comparison of the characteristics of different cultivation conditions ............... 9 Table 2. Comparison of photobioreactors and open ponds (Chisti, 2007) ..................... 11 Table 3. L1 medium formula (Guillard and Hargraves, 1993) ...................................... 29 Table 4. L1 Trace Element Solution .............................................................................. 29 Table 5. f/2 vitamin solution (Guillard and Ryther, 1962; Guillard, 1975) ................... 30 Table 6. Central Composite Design table with four factors and five levels ................... 37 Table 7. CCD table with corresponding experimental conditions ................................. 38 Table 8. Regression model of response surface with four factors and five levels ......... 51 Table 9. Estimate of each component of quadratic model with four factors ................. 52 Table 10. ANOVA table of four influencing factors ..................................................... 53 Table 11. Predicted optimum values of recovery efficiency in four factors model ....... 54 Table 12. Regression model of response surface with three factors at time 25 ............

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    104 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us