AN INTEGRATED HYDROLOGICAL AND HYDROCHEMICAL STUDY OF SURFACE AND GROUNDWATERS IN THE BUNGAWALBIN CREEK CATCHMENT, NORTHEAST NSW, AUSTRALIA. Malcolm Bruce Napier B.Nat.Res. School of Earth, Environmental and Biological Sciences Queensland University of Technology 2017 A thesis submitted for the degree of Master of Applied Science. Keywords Alluvium, Bungawalbin Creek, Bungawalbin Member, Clarence-Moreton Basin, coal-seam gas, Coraki Fault, down-hole geophysics, drill-stem test, fault hydrogeology, fracking, geophysics, Grafton Formation, groundwater, aquifer connectivity, groundwater dependent ecosystems, groundwater discharge, groundwater recharge, hydrochemistry, hydrology, stable isotope, Kangaroo Creek Sandstone, three-dimensional modelling, transient electromagnetics, Maclean Sandstone, methane, methane isotopes, Orara formation, petroleum, Piora Member, Rappville Member, tidal flow, Walloon Coal Measures i Abstract This study integrates hydrological, geophysical, geochemical and isotopic data to develop a conceptual model of surface and groundwater in the Bungawalbin Creek catchment, the southern sub-catchment of the Richmond River in north eastern New South Wales, Australia. The investigation brings together existing and newly-acquired data to provide new insights into the hydrogeology of the Clarence-Moreton Basin consolidated sediments as well as the South Casino Gravel shallow alluvial aquifer, and highlights connectivity between the aquifers and with surface water. Borehole stratigraphic data has been used to create a 3-D digital model of the consolidated sediments and has emphasized the presence of a major fault structure, the Coraki Fault. Hydrochemical and hydraulic evidence of recharge and discharge rates and localities in the alluvium is presented. These include potentiometric mapping, chloride mass-balance and major ion data, which indicate hydraulic continuity in the alluvial aquifer from the upper to the lower catchment. Recharge rates ranging from 7.8 to 981 mm/yr were indicated in the alluvium and from 1.4 to 1047 mm/yr in the consolidated sediments. “Point source” recharge to the largely confined alluvial aquifer by way of surface lagoons and swamps is also indicated. Discharge from the alluvium to the large fresh water tidal pool in the lower catchment is significant and is estimated at 8.4 ML/day. Groundwater discharge may be important to sustaining high-value ecosystems in the lower catchment, particularly during periods of drought. Transient electromagnetic data collected in continuous profiles at three sites distinguishes bedrock and the confining layer from the alluvial aquifer, showing bedrock topography and structure and confirms “point source” recharge locations. Upward flow of water along the Coraki Fault and hydraulic connectivity within the Walloon Coal Measures and with the surface is indicated by down-hole geophysical data from exploration bores. Stable isotope (δ2H and δ18O) data shows evidence of evapotranspiration from the alluvial aquifer in the upper catchment due to groundwater utilization by surface vegetation. In the consolidated sediments, inland and coastal recharge areas are clearly differentiated. Dissolved methane values varied up to 2230 ug/L in surface water and up to 3430 ug/L in groundwater. δ2H and δ13C of methane data indicated probable biogenic formation and mixing of CH4 in the shallow, outcropping sections of the Walloon Coal Measures and were consistent with upward migration of CH4 from consolidated sediments, especially along the ii Coraki Fault. Secondary processes including bacterial oxidation, diffusion and advection of methane complicated interpretation of results. Overall, the study reveals the central role of the alluvial aquifer and its hydrological connections with surface waters and consolidated aquifers, as well as documenting baseline hydrologic, geophysical and geochemical conditions throughout the Bungawalbin catchment. iii Table of Contents Chapter 1: Introduction .......................................................................................................... 1 1.1 Purpose of the Study ................................................................................................... 1 1.2 Features of the Study Area .......................................................................................... 1 1.3 Regional Historical Context ........................................................................................ 4 1.4 Background and Significance of the Study ................................................................. 5 1.4.1 Water as an Economic and Environmental Resource in the Catchment .............. 5 1.4.2 Water Resource Connectivity and its Implications .............................................. 6 Chapter 2: Objectives and Scope ........................................................................................... 7 2.1 Objective ..................................................................................................................... 7 2.2 Knowledge Base and Data Gaps ................................................................................. 7 2.2.1 Water Chemistry Data.......................................................................................... 7 2.2.2 Hydrology ............................................................................................................ 8 2.2.3 Alluvial Aquifer Hydrogeology ........................................................................... 8 2.2.4 Consolidated Aquifers ......................................................................................... 9 2.2.5 Fault Hydrogeology ............................................................................................. 9 2.3 Research Questions and Hypotheses ......................................................................... 10 2.3.1 Research Question 1. ......................................................................................... 10 2.3.2 Research Question 2. ......................................................................................... 10 2.3.3 Research Question 3. ......................................................................................... 11 2.4 Setting of the Study Area .......................................................................................... 11 2.4.1 Topography, Drainage and Geomorphology ..................................................... 11 2.4.2 Regional Geology .............................................................................................. 11 2.4.3 Water Chemistry ................................................................................................ 12 2.4.4 Hydrology .......................................................................................................... 12 2.5 Conclusion ................................................................................................................. 13 Chapter 3: The Study Area .................................................................................................. 14 3.1 Introduction ............................................................................................................... 14 3.2 Climate ...................................................................................................................... 14 3.2.1 Rainfall ............................................................................................................... 14 3.2.2 Evaporation ........................................................................................................ 15 3.2.3 Hydrology .......................................................................................................... 16 3.3 Land and Water Use .................................................................................................. 17 3.3.1 Agriculture ......................................................................................................... 17 3.3.2 Petroleum and Gas Industry ............................................................................... 21 3.3.3 Environmental Values ........................................................................................ 22 3.4 Geology ..................................................................................................................... 24 3.4.1 The Clarence-Moreton Basin ............................................................................. 24 3.4.2 Overview of Geological Setting ......................................................................... 25 3.4.3 Tectono-Stratigraphic History ........................................................................... 28 iv 3.4.4 Stratigraphy ........................................................................................................ 32 3.5 Hydrogeology ............................................................................................................ 36 3.5.1 Post-Bundamba Consolidated Units .................................................................. 36 3.5.2 Alluvium ............................................................................................................ 39 3.5.3 Fault Hydrogeology ........................................................................................... 41 3.6 Summary ................................................................................................................... 43 Chapter 4: Methods and Techniques Used .......................................................................... 44 4.1 Background to Methods
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages203 Page
-
File Size-