Complete List of Abstracts

Complete List of Abstracts

Contents Entropy of Eigenfunctions ........................................ 1 Nalini Anantharaman, Herbert Koch and Stéphane Nonnenmacher 1 Motivations.............................................. 1 2 MainResult.............................................. 4 3 Outline of the Proof . 7 3.1 Definition of the Metric Entropy . 7 3.2 From Classical to Quantum Dynamical Entropy . 9 3.3 Entropic Uncertainty Principle. 13 3.4 Applying the Entropic Uncertainty Principle to the Laplacian Eigenstates . 14 References . 21 Stability of Doubly Warped Product Spacetimes ..................... 23 Lars Andersson 1 Introduction . 23 2 Warped Product Spacetimes . 24 2.1 AsymptoticBehavior .............................. 26 3 Fuchsian Method . 27 3.1 VelocityDominatedEquations....................... 28 3.2 VelocityDominatedSolution........................ 29 4 Stability . 30 References . 31 Rigorous Construction of Luttinger Liquids Through Ward Identities ... 33 Giuseppe Benfatto 1 Introduction . 33 2 The Tomonaga Model with Infrared Cutoff . 34 3 TheRGAnalysis.......................................... 35 4 TheDysonEquation....................................... 37 5 The First Ward Identity . 39 6 The Second Ward Identity . 40 xxvii xxviii Contents 7 The Euclidean Thirring Model . 41 References . 43 New Algebraic Aspects of Perturbative and Non-perturbative Quantum Field Theory ................................................... 45 Christoph Bergbauer and Dirk Kreimer 1 Introduction . 45 2 Lie and Hopf Algebras of Feynman Graphs . 46 3 From Hochschild Cohomology to Physics . 50 4 Dyson-Schwinger Equations . 51 5 Feynman Integrals and Periods of Mixed (Tate) Hodge Structures................................................ 55 References . 57 Exact Solution of the Six-Vertex Model with Domain Wall Boundary Conditions ..................................................... 59 Pavel M. Bleher 1 Six-Vertex Model . 59 2 Phase Diagram of the Six-Vertex Model . 62 3 Izergin-Korepin Determinantal Formula . 63 4 The Six-Vertex Model with DWBC and a Random Matrix Model ................................................... 63 5 Asymptotic Formula for the Recurrence Coefficients . 65 6 Previous Exact Results . 67 7 Zinn-Justin’sConjecture................................... 70 8 Large N Asymptotics of ZN in the Ferroelectric Phase . 71 References . 71 Mathematical Issues in Loop Quantum Cosmology ................... 73 Martin Bojowald 1 Introduction . 73 2 Quantum Representation and Dynamical Equations . 75 2.1 Quantum Reduction . 75 2.2 Dynamics . 76 3 Quantum Singularity Problem . 78 4 Examples for Properties of Solutions . 79 5 Effective Theory . 81 6 Summary................................................ 84 References . 84 Boundary Effects on the Interface Dynamics for the Stochastic Allen–Cahn Equation ............................................ 87 Lorenzo Bertini, Stella Brassesco and Paolo Buttà 1 Introduction . 87 2 ResultsandStrategyofProofs .............................. 89 References . 92 Contents xxix Dimensional Entropies and Semi-Uniform Hyperbolicity .............. 95 Jérôme Buzzi 1 Introduction . 95 2 LowDimension........................................... 97 2.1 IntervalMaps..................................... 97 2.2 SurfaceTransformations............................ 98 3 Dimensional Entropies . 99 3.1 Singular Disks . 99 3.2 Entropy of Collections of Subsets . 100 3.3 Definitions of the Dimensional Entropies . 101 4 Other Growth Rates of Submanifolds . 102 4.1 VolumeGrowth...................................102 4.2 ResolutionEntropies...............................106 5 Properties of Dimensional Entropies . 107 5.1 Link between Topological and Resolution Entropies . 107 5.2 Gap Between Uniform and Ordinary Dimensional Entropies ........................................108 5.3 Continuity Properties . 109 6 Hyperbolicity from Entropies . 110 6.1 A Ruelle-Newhouse Type Inequality . 110 6.2 Entropy-Expanding Maps . 110 6.3 Entropy-Hyperbolicity . 112 6.4 Examples of Entropy-Hyperbolic Diffeomorphisms . 113 7 FurtherDirectionsandQuestions............................113 7.1 Variational Principles . 113 7.2 Dimensional Entropies of Examples . 113 7.3 Other Types of Dimensional Complexity . 114 7.4 Necessity of Topological Assumptions . 114 7.5 Entropy-Hyperbolicity . 114 7.6 Generalized Entropy-Hyperbolicity . 115 8 Cr Sizes.................................................115 References . 116 The Scaling Limit of (Near-)Critical 2D Percolation .................. 117 Federico Camia 1 Introduction . 117 1.1 CriticalScalingLimitsandSLE.....................117 1.2 Percolation.......................................120 2 The Critical Loop Process . 121 2.1 General Features . 121 2.2 ConstructionofaSingleLoop.......................122 3 TheNear-CriticalScalingLimit.............................124 References . 125 xxx Contents Black Hole Entropy Function and Duality ........................... 127 Gabriel Lopes Cardoso 1 Introduction . 127 2 Entropy Function and Electric/Magnetic Duality Covariance . 128 3 Application to N = 2 Supergravity . 130 4 Duality Invariant OSV Integral . 133 References . 133 Weak Turbulence for Periodic NLS ................................ 135 James Colliander 1 Introduction . 135 2 NLSasanInfiniteSystemofODEs..........................137 3 Conditions on a Finite Set Λ ⊂ Z2 ..........................138 4 Arnold Diffusion for the Toy Model ODE . 139 5 Construction of the Resonant Set Λ ..........................140 References . 142 Angular Momentum-Mass Inequality for Axisymmetric Black Holes .... 143 Sergio Dain 1 Introduction . 143 2 Variational Principle for the Mass . 144 References . 147 Almost Everything About the Fibonacci Operator .................... 149 David Damanik 1 Introduction . 149 2 TheTraceMap...........................................150 3 The Cantor Structure and the Dimension of the Spectrum . 152 4 The Spectral Type . 154 5 Bounds on Wavepacket Spreading . 156 References . 158 Entanglement-Assisted Quantum Error-Correcting Codes ............. 161 Igor Devetak, Todd A. Brun and Min-Hsiu Hsieh 1 Introduction . 161 2 Notations................................................162 3 Entanglement-Assisted Quantum Error-Correcting Codes . 163 3.1 The Channel Model: Discretization of Errors . 164 3.2 The Entanglement-Assisted Canonical Code . 165 3.3 The General Case . 167 3.4 Distance . 169 3.5 Generalized F4 Construction........................169 3.6 Bounds on Performance . 170 4 Conclusions ..............................................171 References . 171 Contents xxxi Particle Decay in Ising Field Theory with Magnetic Field .............. 173 Gesualdo Delfino 1 Ising Field Theory . 173 2 Evolution of the Mass Spectrum . ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    16 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us