Characterizations of Continuous Operators on with the Strict Topology

Characterizations of Continuous Operators on with the Strict Topology

Tusi Mathematical Ann. Funct. Anal. (2021) 12:28 Research https://doi.org/10.1007/s43034-021-00112-1 Group ORIGINAL PAPER Characterizations of continuous operators on Cb(X) with the strict topology Marian Nowak1 · Juliusz Stochmal2 Received: 2 September 2020 / Accepted: 7 January 2021 / Published online: 16 February 2021 © The Author(s) 2021 Abstract C X Let X be a completely regular Hausdorf space and b( ) be the space of all bounded continuous functions on X, equipped with the strict topology . We study some ⋅ C X important classes of (, ‖ ‖E)-continuous linear operators from b( ) to a Banach E ⋅ space ( , ‖ ‖E) : -absolutely summing operators, compact operators and -nuclear operators. We characterize compact operators and -nuclear operators in terms of their representing measures. It is shown that dominated operators and -absolutely T C X → E summing operators ∶ b( ) coincide and if, in particular, E has the Radon– Nikodym property, then -absolutely summing operators and -nuclear operators coincide. We generalize the classical theorems of Pietsch, Tong and Uhl concern- ing the relationships between absolutely summing, dominated, nuclear and compact operators on the Banach space C(X), where X is a compact Hausdorf space. Keywords Spaces of bounded continuous functions · k-spaces · Radon vector measures · Strict topologies · Absolutely summing operators · Dominated operators · Nuclear operators · Compact operators · Generalized DF-spaces · Projective tensor product Mathematics Subject Classifcation 46G10 · 28A32 · 47B10 Communicated by Raymond Mortini. * Juliusz Stochmal [email protected] Marian Nowak [email protected] 1 Institute of Mathematics, University of Zielona Góra, ul. Szafrana 4A, 65-516 Zielona Gora, Poland 2 Institute of Mathematics, Kazimierz Wielki University, ul. Powstańców Wielkopolskich 2, 85-090 Bydgoszcz, Poland Vol.:(0123456789) 28 Page 2 of 26 M. Nowak and J. Stochmal 1 Introduction and preliminaries The Riesz representation theorem plays a crucial role in the study of operators on the Banach space C(X) of continuous functions on a compact Hausdorf space X. Due to this theorem, diferent classes of operators on C(X) have been character- ized in terms of their representing Radon vector measures. Absolutely summing operators between Banach spaces have been the object of several studies (see [1, pp. 209–233] and [5, 8, 11, 27, 28, 31, 34]). It originates in the fundamental paper of Grothendieck [17] from 1953. Grothendieck’s ine- quality has equivalent formulation using the theory of absolutely summing opera- tors (see [1, Theorem 8.3.1] and [4, 22]). In the multilinear case, it is also con- nected with the Bohnenblust–Hille and the Hardy–Littlewood inequalities (see [2]). There is a vast literature on absolutely summing operators from the Banach space C(X) to a Banach space E (see [1], [9, Chap. VI], [11, 34, 43]). The concept of nuclearity in Banach spaces is due to Grothendieck [17, 18] and Ruston [33] and has the origin in Schwartz’s kernel theorem [18]. Many authors have studied nuclear operators between locally convex spaces (see [21, §17.3], [37, Chap. 3, §7], [46, p. 289]) and Banach spaces (see [9, Chap. VI], [11, 16] [46, p. 279]). If F is a Banach space, nuclear operators from the Banach space C(X, F) of F-valued continuous functions on a compact Hausdorf space X to E have been studied intensively by Popa [29], Saab [35], Saab and Smith [36]. In particular, a characterization of nuclear operators from C(X) to E in terms of their representing measures can be found in [9, Theorem 4, pp. 173–174], [34, Propo- sition 5.30], [43, Proposition 1.2]. The interplay between absolutely summing operators, dominated operators of Dinculeanu (see [12, §19], [13, §1]) and nuclear operators T ∶ C(X) → E has been an interesting issue in operator theory. Pietsch [27, 2.3.4, Proposition, p. 41] proved that dominated operators and absolutely summing operators on the Banach space C(X) coincide. It is known that if in particular, E has the Radon–Nikodym property, then absolutely summing and nuclear operators T ∶ C(X) → E coincide (see [9, Corollary 5, p. 174]). Moreover, Uhl [44, Theorem 1] showed that if, E has the Radon–Nikodym property, then every dominated operator T ∶ C(X) → E is compact. The aim of this paper is to extend these classical results to the setting, where X is a completely regular Hausdorf k-space. Throughout the paper, we assume that (X, T) is a completely regular Hausdorf space. By K we denote the family of all compact sets in X. Let Bo denote the -algebra of Borel sets in X. B Let Cb(X) (resp. B( o)) denote the Banach space of all bounded continuous (resp. bounded Bo-measurable) scalar functions on X, equipped with the topology ⋅ S B B u of the uniform norm ‖ ‖∞ . By ( o) we denote the space of all o-simple sca- � lar functions on X. Let Cb(X) stand for the Banach dual of Cb(X). Following [15, 37] and [45, Defnition 10.4, p. 137] the strict topology on Cb(X) is the locally convex topology determined by the seminorms Characterizations of continuous operators on Cb(X)... Page 3 of 26 28 pw(u) ∶= sup w(t)u(t) for u ∈ Cb(X), t∈X where w runs over the family W of all bounded functions w ∶ X → [0, ∞) which van- K ish at infnity, that is, for every �>0 there exists K ∈ such that supt∈X⧵K w(t) ≤ . W W W Let 1 ∶= {w ∈ ∶ 0 ≤ w ≤ X} . For w ∈ 1 and �>0 let Uw() ∶= {u ∈ Cb(X)∶pw(u) ≤ }. W Note that the family {Uw(�)∶w ∈ 1, �>0} is a local base at 0 for . The strict topology on Cb(X) has been studied intensively (see [15, 20, 38, 41, 45]). Note that can be characterized as the fnest locally convex Haus- dorf topology on Cb(X) that coincides with the compact-open topology c on u -bounded sets (see [41, Theorem 2.4]). The topologies and u have the same bounded sets. This means that (Cb(X), ) is a generalized DF-space (see [38, Cor- ollary]), and it follows that (Cb(X), ) is quasinormable (see [32, p. 422]). If, in particular, X is locally compact (resp. compact), then coincides with the origi- nal strict topology of Buck [6] (resp. = u). Recall that a countably additive scalar measure on Bo is said to be a Radon measure if its variation is regular, that is, for every A ∈ Bo and �>0 there exist K ∈ K and O ∈ T with K ⊂ A ⊂ O such that (O⧵K) ≤ . Let M(X) denote the Banach space of all scalar Radon measures, equipped with the total variation norm ‖‖ ∶= ��(X). The following characterization of the topological dual of (Cb(X), ) will be of importance (see [15, Lemma 4.5]), [20, Theorem 2]. Theorem 1.1 For a linear functional Φ on Cb(X) the following statements are equivalent: (i) Φ is -continuous. (ii) There exists a unique ∈ M(X) such that Φ(u)=Φ(u)= ud for u ∈ Cb(X) X � ⋅ and ‖Φ‖ = ��(X) for ∈ M(X) (here ‖ ‖ denotes the conjugate norm in � Cb(X) ). The following result will be useful (see [41, Theorem 5.1]). Theorem 1.2 For a subset M of M(X) the following statements are equivalent: M (i) sup�∈M �(X) < ∞ and is uniformly tight, that is, for each �>0 there K exists K ∈ such that sup∈M (X ⧵ K) ≤ . M (ii) The family {Φ ∶ ∈ } is -equicontinuous. Recall that a completely regular Hausdorf space (X, T) is a k-space if any sub- set A of X is closed whenever A ∩ K is compact for all compact sets K in X. In 28 Page 4 of 26 M. Nowak and J. Stochmal particular, every locally compact Hausdorf space, every metrizable space and every space satisfying the frst countability axiom is a k-space (see [14, Chap. 3, § 3]). T From now on, we will assume that (X, ) is a k-space. Then, the space (Cb(X), ) is complete (see [15, Theorem 2.4]). ⋅ We assume that (E, ‖ ‖E) is a Banach space. Let BE stand for the closed unit ball in the Banach dual E of E. → Recall that a bounded linear operator T ∶ Cb(X) E is said to be absolutely sum- ming if there exists a constant c > 0 such that for any fnite set {u1, … , un} in Cb(X), � � �n �n ‖T(u )‖ c sup �Φ(u )� ∶Φ∈B � . i E ≤ i Cb(X) (1.1) i=1 i=1 The infmum of number of c > 0 satisfying (1.1) denoted by ‖T‖as is called an abso- lutely summing norm of T. → It is known that a bounded linear operator T ∶ Cb(X) E is absolutely summing if and only if T maps unconditionally convergent series in Cb(X) into absolutely con- vergent series in E (see [9, Defnition 1, p. 161 and Proposition 2, p. 162]). For t ∈ X , let t stand for the point mass measure, that is, t(A) ∶= A(t) B + for A ∈ o . Then t ∈ M (X) and ∫X u dt = u(t) for u ∈ Cb(X) . Clearly, ‖t‖ = t(X)=1. → Lemma 1.3 For a bounded linear operator T ∶ Cb(X) E , the following statements are equivalent: (i) T is absolutely summing. (ii) There exists c > 0 such that for any set {u1, … , un} in Cb(X) , � � �n �n � � � � ‖T(ui)‖E ≤ c sup � ui d� ∶ ∈ M(X), ��(X) ≤ 1 . i=1 i=1 � �X � ⇒ Proof (i) (ii) There exists c > 0 such that for any set {u1, … , un} in Cb(X), � � �n �n ‖T(u )‖ c sup �Φ(u )� ∶Φ∈B � .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    26 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us