
<p><strong>Chapter 2 </strong></p><p>Fundamental Properties of Antennas </p><p>ECE 5318/6352 <br>Antenna Engineering <br>Dr. Stuart Long </p><p>1</p><p>. IEEE Standards </p><p>. Definition of Terms for Antennas </p><p>. IEEE Standard 145-1983 . IEEE Transactions on Antennas and <br>Propagation Vol. AP-31, No. 6, Part II, Nov. 1983 </p><p>2</p><p>. Radiation Pattern <br>(or Antenna Pattern) </p><p>“The spatial distribution of a quantity which characterizes the electromagnetic field </p><p>generated by an antenna.” </p><p>3</p><p>. Distribution can be a </p><p>. Mathematical function . Graphical representation . Collection of experimental data points </p><p>4</p><p>. Quantity plotted can be a </p><p>. Power flux density <strong>W </strong><em>[W/m²] </em>. Radiation intensity <strong>U </strong><em>[W/sr] </em>. Field strength <strong>E </strong><em>[V/m] </em></p><p>. Directivity <strong>D </strong></p><p>5</p><p>. Graph can be </p><p>. Polar or rectangular </p><p>6</p><p>. Graph can be </p><p>. Amplitude field |<strong>E</strong>| or power |<strong>E</strong>|² patterns </p><p></p><ul style="display: flex;"><li style="flex:1">(in linear scale) </li><li style="flex:1">(in dB) </li></ul><p></p><p>7</p><p>. Graph can be </p><p>. 2-dimensional or 3-D most usually several 2-D “cuts” in principle planes </p><p>8</p><p>. Radiation pattern can be </p><p>. Isotropic </p><p>Equal radiation in all directions (not physically realizable, but valuable for comparison purposes) </p><p>. Directional </p><p>Radiates (or receives) more effectively in some directions than in others </p><p>. Omni-directional </p><p>nondirectional in azimuth, directional in elevation </p><p>9</p><p>.Principle patterns </p><p>. <strong>E</strong>-plane <br>. <strong>H</strong>-plane </p><p>Plane defined by <strong>H</strong>-field and direction of maximum radiation <br>Plane defined by <strong>E</strong>-field and direction of maximum radiation </p><p>(usually coincide with principle planes of the coordinate system) </p><p>10 </p><p>Coordinate System </p><p>Fig. 2.1 Coordinate system for antenna analysis. </p><p>11 </p><p>. Radiation pattern lobes </p><p>. Major lobe (main beam) in direction of maximum radiation (may be more than one) </p><p>. Minor lobe - any lobe but a major one . Side lobe - lobe adjacent to major one . Back lobe – minor lobe in direction exactly opposite to major one </p><p>12 </p><p>. Side lobe level or ratio (SLR) </p><p>. (side lobe magnitude / major lobe magnitude) . - 20 dB typical . < -50 dB very difficult <br>Plot routine included on CD for rectangular and polar graphs </p><p>13 </p><p>Polar Pattern </p><p>Fig. 2.3(a) Radiation lobes and beamwidths of an antenna pattern </p><p>14 </p><p>Linear Pattern </p><p>Fig. 2.3(b) Linear plot of power pattern and its associated lobes and beamwidths </p><p>15 </p><p>.Field Regions </p><p>. Reactive near field </p><p>energy stored not radiated </p><p><em>D</em><sup style="top: -0.8344em;">3 </sup><br><em>R </em>0.62 </p><p></p><p><em>λ = </em>wavelength </p><p><em>D= </em>largest dimension of the antenna </p><p>16 </p><p>.Field Regions </p><p>. Radiating near field (Fresnel) radiating fields predominate pattern still depend on <em>R </em>radial component may still be appreciable </p><p></p><ul style="display: flex;"><li style="flex:1"><em>D</em><sup style="top: -0.8398em;">3 </sup></li><li style="flex:1"><em>D</em><sup style="top: -0.8398em;">2 </sup></li></ul><p></p><p>0.62 </p><p> <em>R </em> 2 </p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p><em>λ = </em>wavelength </p><p><em>D= </em>largest dimension of the antenna </p><p>17 </p><p>.Field Regions </p><p>. Far field (Fraunhofer) </p><p>field distribution independent of <em>R </em></p><p>field components are essentially transverse </p><p><em>D</em><sup style="top: -0.8407em;">2 </sup><br><em>R </em> 2 </p><p></p><p>18 </p><p>.Radian </p><p>2 radians in full circle arc length of circle </p><p> <em>r </em> </p><p>Fig. 2.10(a) Geometrical arrangements for defining a radian </p><p>19 </p><p>.Steradian </p><p>one steradian subtends an area of </p><p><em>A </em> <em>r</em><sup style="top: -0.685em;">2 </sup></p><p>4π steradians in entire sphere </p><p><em>dA </em> <em>r</em><sup style="top: -1.035em;">2 </sup>sin <em>d</em> <em>d</em> </p><p><em>dA d</em> sin <em>d</em> <em>d</em> </p><p><em>r</em><sup style="top: -1.0006em;">2 </sup></p><p>Fig. 2.10(b) Geometrical arrangements for defining a steradian. </p><p>20 </p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages42 Page
-
File Size-