Chapter 22 Fundamentalfundamental Propertiesproperties Ofof Antennasantennas

Chapter 22 Fundamentalfundamental Propertiesproperties Ofof Antennasantennas

<p><strong>Chapter 2 </strong></p><p>Fundamental Properties of Antennas </p><p>ECE 5318/6352 <br>Antenna Engineering <br>Dr. Stuart Long </p><p>1</p><p>. IEEE Standards </p><p>. Definition of Terms for Antennas </p><p>. IEEE Standard 145-1983 . IEEE Transactions on Antennas and <br>Propagation Vol. AP-31, No. 6, Part II, Nov. 1983 </p><p>2</p><p>. Radiation Pattern <br>(or Antenna Pattern) </p><p>“The spatial distribution of a quantity which characterizes the electromagnetic field </p><p>generated by an antenna.” </p><p>3</p><p>. Distribution can be a </p><p>. Mathematical function . Graphical representation . Collection of experimental data points </p><p>4</p><p>. Quantity plotted can be a </p><p>. Power flux density&nbsp;<strong>W </strong><em>[W/m²] </em>. Radiation intensity&nbsp;<strong>U </strong><em>[W/sr] </em>. Field strength&nbsp;<strong>E </strong><em>[V/m] </em></p><p>. Directivity <strong>D </strong></p><p>5</p><p>. Graph can be </p><p>. Polar or rectangular </p><p>6</p><p>. Graph can be </p><p>. Amplitude field |<strong>E</strong>| or power |<strong>E</strong>|² patterns </p><p></p><ul style="display: flex;"><li style="flex:1">(in linear scale) </li><li style="flex:1">(in dB) </li></ul><p></p><p>7</p><p>. Graph can be </p><p>. 2-dimensional or 3-D most usually several 2-D “cuts” in principle planes </p><p>8</p><p>. Radiation pattern can be </p><p>. Isotropic </p><p>Equal radiation in all directions (not physically realizable, but valuable for comparison purposes) </p><p>. Directional </p><p>Radiates (or receives) more effectively in some directions than in others </p><p>. Omni-directional </p><p>nondirectional in azimuth, directional in elevation </p><p>9</p><p>.Principle patterns </p><p>. <strong>E</strong>-plane <br>. <strong>H</strong>-plane </p><p>Plane defined by <strong>H</strong>-field and direction of maximum radiation <br>Plane defined by <strong>E</strong>-field and direction of maximum radiation </p><p>(usually coincide with principle planes of the coordinate system) </p><p>10 </p><p>Coordinate System </p><p>Fig. 2.1 Coordinate system for antenna analysis. </p><p>11 </p><p>. Radiation pattern lobes </p><p>. Major lobe (main beam) in direction of maximum radiation (may be more than one) </p><p>. Minor lobe - any lobe but a major one . Side lobe - lobe adjacent to major one . Back lobe – minor lobe in direction exactly opposite to major one </p><p>12 </p><p>. Side lobe level or ratio (SLR) </p><p>. (side lobe magnitude / major lobe magnitude) . - 20 dB typical . &lt; -50 dB very difficult <br>Plot routine included on CD for rectangular and polar graphs </p><p>13 </p><p>Polar Pattern </p><p>Fig. 2.3(a) Radiation lobes and beamwidths of an antenna pattern </p><p>14 </p><p>Linear Pattern </p><p>Fig. 2.3(b) Linear plot of power pattern and its associated lobes and beamwidths </p><p>15 </p><p>.Field Regions </p><p>. Reactive near field </p><p>energy stored not radiated </p><p><em>D</em><sup style="top: -0.8344em;">3 </sup><br><em>R </em>0.62 </p><p></p><p><em>λ = </em>wavelength </p><p><em>D= </em>largest dimension of the antenna </p><p>16 </p><p>.Field Regions </p><p>. Radiating near field (Fresnel) radiating fields predominate pattern still depend on <em>R </em>radial component may still be appreciable </p><p></p><ul style="display: flex;"><li style="flex:1"><em>D</em><sup style="top: -0.8398em;">3 </sup></li><li style="flex:1"><em>D</em><sup style="top: -0.8398em;">2 </sup></li></ul><p></p><p>0.62 </p><p> <em>R </em> 2 </p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p><em>λ = </em>wavelength </p><p><em>D= </em>largest dimension of the antenna </p><p>17 </p><p>.Field Regions </p><p>. Far field (Fraunhofer) </p><p>field distribution independent of <em>R </em></p><p>field components are essentially transverse </p><p><em>D</em><sup style="top: -0.8407em;">2 </sup><br><em>R </em> 2 </p><p></p><p>18 </p><p>.Radian </p><p>2 radians in full circle arc length of circle </p><p> <em>r </em> </p><p>Fig. 2.10(a) Geometrical arrangements for defining a radian </p><p>19 </p><p>.Steradian </p><p>one steradian subtends an area of </p><p><em>A </em> <em>r</em><sup style="top: -0.685em;">2 </sup></p><p>4π steradians in entire sphere </p><p><em>dA </em> <em>r</em><sup style="top: -1.035em;">2 </sup>sin <em>d</em> <em>d</em> </p><p><em>dA d</em> &nbsp; sin <em>d</em> <em>d</em> </p><p><em>r</em><sup style="top: -1.0006em;">2 </sup></p><p>Fig. 2.10(b) Geometrical arrangements for defining a steradian. </p><p>20 </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    42 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us