Switched-Capacitor Integrator

Switched-Capacitor Integrator

EE247 Lecture 10 • Switched-capacitor filters (continued) – Switched-capacitor integrators • DDI & LDI integrators – Effect of parasitic capacitance – Bottom-plate integrator topology – Switched-capacitor resonators – Bandpass filters – Lowpass filters – Switched-capacitor filter design considerations • Termination implementation • Transmission zero implementation • Limitations imposed by non-idealities EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 1 Switched-Capacitor Integrator C φ φ I φ 1 2 1 Vin - φ 2 Cs Vo + T=1/fs C C φ I φ I 1 2 Vin Vin - - C C s s Vo Vo + + φ High φ 1 2 High Æ C Charged to Vin s ÆCharge transferred from Cs to CI EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 2 Switched-Capacitor Integrator Output Sampled on φ1 φ φ 1 2 Vin CI φ - 1 Cs Vo Vo1 + φ φ φ φ φ Clock 1 2 1 2 1 Vin VCs Vo Vo1 EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 3 Switched-Capacitor Integrator ( (n-1)T n-3/2)Ts s (n-1/2)Ts nTs (n+1/2)Ts (n+1)Ts φ φ φ φ φ Clock 1 2 1 2 1 Vin Vs Vo Vo1 Φ 1 Æ Qs [(n-1)Ts]= Cs Vi [(n-1)Ts] , QI [(n-1)Ts] = QI [(n-3/2)Ts] Φ 2 Æ Qs [(n-1/2) Ts] = 0 , QI [(n-1/2) Ts] = QI [(n-1) Ts] + Qs [(n-1) Ts] Φ 1 _Æ Qs [nTs ] = Cs Vi [nTs ] , QI [nTs ] = QI[(n-1) Ts ] + Qs [(n-1) Ts] Since Vo1= - QI /CI & Vi = Qs / Cs Æ CI Vo1(nTs) = CI Vo1 [(n-1) Ts ] -Cs Vi [(n-1) Ts ] EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 4 Switched-Capacitor Integrator φ Output Sampled on 1 φ φ 1 2 Vin CI φ - 1 Cs Vo Vo1 + =−⎡ −−⎤⎡⎤ CV(nT)CVIIos o⎣(n 1)Ts ⎦⎣⎦ CV sin (n 1)Ts C V(nT)Voso=−⎡⎤(n−− 1)Tsss V ⎡⎤ (n 1)T ⎣⎦CI in ⎣⎦ −−11C Voo (Z)=− Z V (Z) Zs V (Z) CI in − Vo =−Cs × Z 1 (Z) − CI 1−Z 1 Vin DDI (Direct-Transform Discrete Integrator) EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 5 Switched-Capacitor Direct-Transform Discrete Integrator C φ φ I 1 2 Vin φ - 1 Cs Vo + − Vo =−Cs × z 1 (z) − CI 1−z 1 Vin C =−s × −1 C1I z EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 6 DDI Switched-Capacitor Integrator C φ φ I 1 2 Vin φ - 1 Cs Vo + − Vo =−Cs ×z 1 = jTω (z)− , z e CI 1−z 1 Vin αα− − jT/2ω jj− =×CCss1 = ×e α =ee ωωω− since: sin CCII1−−eeejT jT/2 jT/2 2j − ω =−jeCs ×jT/2 × 1 CI 2sin()ωT/2 Cs 1 ωT/2 − jT/2ω =−ω × × e CjTI sin()ωT/2 ror se Er Ideal Integrator Magnitude Error Pha EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 7 DDI Switched-Capacitor Integrator C φ φ I 1 2 Vin φ - 1 Cs Vo + Example: Mag. & phase error for: 1- f / fs=1/12 Æ Mag. error = 1% or 0.1dB Phase error=15 degree Qintg = -3.8 2- f / fs=1/32 Æ Mag. error=0.16% or 0.014dB Phase error=5.6 degree DDI Integrator: Æ magnitude error no problem Qintg = -10.2 phase error major problem EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 8 5th Order Low-Pass Switched Capacitor Filter jω Built with DDI Integrators jω ω s s-plane s-plane Coarse View Fine View σ σ Example: 5th Order Elliptic Filter Ideal Pole Singularities pushed -ω Ideal Zero s towards RHP due to DDI Pole integrator excess phase DDI Zero EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 9 Switched Capacitor Filter Build with DDI Integrator H ()jω Passband Peaking SC DDI based Filter Zeros lost! fs /2 Frequencyf (Hz) 2f f Continuous-Time s s Prototype EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 10 Switched-Capacitor Integrator Output Sampled on φ2 C φ φ I 1 2 Vin φ - 2 Cs Vo Vo2 + Sample output ½ clock cycle earlier Æ Sample output on φ2 EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 11 Switched-Capacitor Integrator Output Sampled on φ2 (n-3/2)Ts (n-1)T s (n-1/2)Ts nTs (n+1/2)Ts (n+1)Ts φ φ φ φ φ Clock 1 2 1 2 1 Vin Vs Vo2 Φ 1 Æ Qs [(n-1)Ts]= Cs Vi [(n-1)Ts] , QI [(n-1)Ts] = QI[(n-3/2)Ts] Φ 2 Æ Qs [(n-1/2) Ts] = 0 , QI [(n-1/2) Ts] = QI [(n-3/2) Ts] + Qs [(n-1) Ts] Φ 1 _Æ Qs [nTs ] = Cs Vi [nTs ] , QI [nTs ] = QI[(n-1) Ts ] + Qs [(n-1) Ts] Φ 2 Æ Qs [(n+1/2) Ts] = 0 , QI [(n+1/2) Ts] = QI [(n-1/2) Ts] + Qs [n Ts] EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 12 Switched-Capacitor Integrator Output Sampled on φ2 (n-3/2)Ts (n-1)T s (n-1/2)Ts nTs (n+1)Ts φ φ φ φ φ Clock 1 2 1 2 1 Vin Vs Vo QI [(n+1/2) Ts] = QI [(n-1/2) Ts] + Qs [n Ts] Vo2= - QI /CI & Vi = Qs / Cs Æ CI Vo2 [(n+1/2) Ts] = CI Vo2 [(n-1/2) Ts ] -Cs Vi [n Ts ] Using the z operator rules: V − o2 =−Cs × z 1/2 (z) − Æ C V z1/2 = C V z-1/2 - C V CI 1−z 1 I o2 I o2 s i Vin EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 13 LDI Switched-Capacitor Integrator C LDI (Lossless Discrete Integrator) Æ φ φ I 1 2 same as DDI but output is sampled ½ Vin φ clock cycle earlier - 2 LDI Cs Vo2 V − + o2 =−Cs ×z 1/2 = jTω (z)− , z e CI 1z− 1 Vin − ω =−CCse ×jT/2 = s × 1 −−+ωωω CCII1−−eeej T j T/2 j T/2 =−j Cs × 1 CI 2sin()ωT/2 Cs 1 ωT/2 =−ω × No Phase Error! CjTI sin()ωT/2 For signals at frequencies << sampling freq. Æ Magnitude error negligible Ideal Integrator Magnitude Error EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 14 Switched-Capacitor Filter Built with LDI Integrators H ()jω Zeros Preserved Frequencyf (Hz) 2f fs /2 s s f EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 15 Switched-Capacitor Integrator Parasitic Capacitor Sensitivity C φ φ I 1 2 Vin - Vo Cp2 C Cs p3 + Cp1 Effect of parasitic capacitors: 1- Cp1 - driven by opamp o.k. 2- Cp2 - at opamp virtual gnd o.k. 3- Cp3 – Charges to Vin & discharges into CI Æ Problem parasitic capacitor sensitivity EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 16 Parasitic Insensitive Bottom-Plate Switched-Capacitor Integrator Sensitive parasitic cap. Æ Cp1 Æ rearrange circuit so that Cp1 does not charge/discharge φ 1=1 Æ Cp1 grounded φ 2=1 Æ Cp1 at virtual ground φ φ CI 1 2 - C C s p1 Vo + Vi+ Cp2 Vi- Solution: Bottom plate capacitor integrator EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 17 Bottom Plate Switched-Capacitor Integrator φ φ φ CI 1 1 2 Vo1 - φ Cs 2 Vo + Vo2 Vi+ Vi- Output/Input z-Transform Vo1 Vo2 Note: on φ1 on φ2 − 1 Different delay from Vi+ & −1 2 Vi+ CCsszz Vi- to either output CC−−11 on φ1 II1z−− 1z Æ Special attention needed for input/output connections Vi- −1 −−CCssz12 to ensure LDI realization on φ2 −− CCII1z−−11 1z EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 18 Bottom Plate Switched-Capacitor Integrator z-Transform Model φ φ CI φ 1 2 1 − −1 zz1 - 2 Vo1 −−C11φ 1z−−s 1z 2 Vo + Vo2 Vi+ −1 z12 − Input/Output−− z-transform Vi- 1z−−11 1z −1 Vi+ CCs I 2 −1 Vo1 z z 2 − −1 + 1 Vi- −CCs I 1z z 2 Vo2 LDI EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 19 LDI Switched-Capacitor Ladder Filter Cs − Cs CI CI + 1 +1 2 - 2 + 1 z − z z 2 1 1 1 1 1 τ τ − 1 − sτ s 4 s 5 2 − 2 3 z 2 z + - + - − z − − 1 − − 1 1z 1z− 1 1z 1 1 − − 2 2 z +1 z 2 C C z C s − s Cs − s C C C I I CI I Delay around integrator loop is (z-1/2 . z+1/2 =1) Î LDI function EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 20 Switched-Capacitor LDI Resonator Resonator Signal Flowgraph φ φ ω 1 2 − 1 s ω2 φ φ s 2 1 C ω ==×1 1 1sf RCeq1 2 C 2 C ω ==×1 3 2sf RCeq3 4 C 4 EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 21 Fully Differential Switched-Capacitor Resonator • Note: Two sets of S.C. bottom plate networks for each differential integrator φ φ 1 2 φ φ 1 2 EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 22 Switched-Capacitor LDI Bandpass Filter Utilizing Continuous-Time Termination Bandpass Filter Signal Flowgraphω − 0 CQ V s o1 Vo2 Vi -1/Q Vos ω0 s C C V ω =×3 =×1 o2 0sff s CC42 C Q = 2 C Q Vi EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    28 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us