Mathematical Morphology a non exhaustive overview Adrien Bousseau Mathematical Morphology • Shape oriented operations, that “ simplify image data, preserving their essential shape characteristics and eliminating irrelevancies” [Haralick87] Mathematical Morphology 2 Overview • Basic morphological operators • More complex operations • Conclusion and References Mathematical Morphology 3 Overview • Basic morphological operators – Binary – Grayscale – Color – Structuring element • More complex operations • Conclusion and References Mathematical Morphology 4 Basic operators: binary • Dilation , erosion by a structuring element Mathematical Morphology 5 Basic operators: binary • Opening ° : remove capes, isthmus and islands smaller than the structuring element Mathematical Morphology 6 Basic operators: binary • Closing ° : fill gulfs, channels and lakes smaller than the structuring element Mathematical Morphology 7 Basic operators: binary • Sequencial filter: open-close or close-open Mathematical Morphology 8 Overview • Basic morphological operators – Binary – Grayscale – Color – Structuring element • More complex operations • Conclusion and References Mathematical Morphology 9 Basic operator: grayscale • Dilation : max over the structuring element Mathematical Morphology 10 Basic operator: grayscale • Erosion : min over the structuring element Mathematical Morphology 11 Basic operator: grayscale • Opening ° : remove light features smaller than the structuring element Mathematical Morphology 12 Basic operator: grayscale • Closing ° : remove dark features smaller than the structuring element Mathematical Morphology 13 Basic operator: grayscale • Sequential filter (open-close or close-open): remove both light and dark features Mathematical Morphology 14 Overview • Basic morphological operators – Binary – Grayscale – Color – Structuring element • More complex operations • Conclusion and References Mathematical Morphology 15 Color images • Process each channel separately: color ghosting with basic operators Mathematical Morphology 16 Color images • Process each channel separately: color ghosting unnoticeable with sequential operators opening Mathematical Morphology 17 Color images • Several ordering strategy Mathematical Morphology 18 Overview • Basic morphological operators – Binary – Grayscale – Color – Structuring element • More complex operations • Conclusion and References Mathematical Morphology 19 Structuring element • Usually, flat element (binary) • Grayscale element: fuzzy morphology Mathematical Morphology 20 Structuring element • Shape has an impact! Mathematical Morphology 21 Structuring element • Choose the structuring element according to the image structure Mathematical Morphology 22 Structuring element • Choose the structuring element according to the image structure Mathematical Morphology 23 Overview • Basic morphological operators • More complex operations – Reconstruction operators – Top hat, sharpening, distance, thinning, segmentation... • Conclusion and References Mathematical Morphology 24 Reconstruction operators • Remove features smaller than the structuring element, without altering the shape • Reconstruct connected components from the preserved features Mathematical Morphology 25 Reconstruction operators: binary • Opening by reconstruction: – Erosion: f'(0) = f – Iterative reconstruction: f'(t+1) = min(f'(t),I) until stability Mathematical Morphology 26 Reconstruction operators: binary • Closing by reconstruction: – Dilation: f'(0) = f – Iterative reconstruction: f'(t+1) = max(f'(t),I) until stability Mathematical Morphology 27 Reconstruction operators: grayscale • Opening by reconstruction: remove unconnected light features Mathematical Morphology 28 Reconstruction operators: grayscale • Closing by reconstruction: remove unconnected dark features Mathematical Morphology 29 Reconstruction operators: grayscale • Sequential filter by reconstruction: open-close Mathematical Morphology 30 Overview • Basic morphological operators • More complex operations – Reconstruction operators – Top hat, sharpening, distance, thinning, segmentation... • Conclusion and References Mathematical Morphology 31 Top Hat • White top-hat: f-opening(f) Extract light features Mathematical Morphology 32 Top Hat • Black top-hat: closing(f)-f Extract dark features Mathematical Morphology 33 Edge sharpening • Toggle mapping f f f (f+f)/2 Mathematical Morphology 34 Edge sharpening • Toggle mapping Mathematical Morphology 35 Distance function • Distance from binary elements Mathematical Morphology 36 Thinning • Binary (or grayscale ?) skeleton Mathematical Morphology 37 Segmentation • Watershed: – Image = heightfield – Flood the image from its minima – Lake junctions give the segmentation Mathematical Morphology 38 Segmentation • Watershed: hierarchical results Mathematical Morphology 39 Overview • Basic morphological operators • More complex operations • Conclusion and References Mathematical Morphology 40 Conclusion • Powerful toolbox for many image analysis tasks • Not famous because not useful? • Not used because not famous? • Based on a whole mathematical theory • But can be very practical (maybe too much?) • French! Mathematical Morphology 41 References • Pierre Soille, 2003: Morphological Image Analysis, Principles and Applications. (Practical approach) • Jean Serra and Luc Vincent, 1992: An Overview of Morphological Filtering. (Mathematical approach) Mathematical Morphology 42.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages42 Page
-
File Size-