Hilbert Spaces

Hilbert Spaces

Hilbert Spaces Definition. A complex inner product space (or pre-Hilbert space) is a complex vector space X together with an inner product: a function from X × X into C (denoted by hy, xi) satisfying: (1) (∀ x ∈ X) hx, xi ≥ 0 and hx, xi =0 iff x = 0. (2) (∀ α, β ∈ C) (∀ x, y, z ∈ X), hz,αx + βyi = αhz, xi + βhz,yi. (3) (∀ x, y ∈ X) hy, xi = hx, yi Remarks. (2) says the inner product is linear in the second variable; (3) says the inner product is sesquilinear; (2) and (3) imply hαx + βy,zi =α ¯hx, zi + β¯hy, zi, so the inner product is conjugate linear in the first variable. Definition. For x ∈ X, let kxk = hx, xi. p Cauchy-Schwarz Inequality. (∀ x, y ∈ X) |hy, xi| ≤ kxk·kyk, with equality iff x and y are linearly dependent. Proof. The result is obvious if hy, xi = 0. Suppose γ ≡ hy, xi= 6 0. Then x =6 0, y =6 0. Let z = γ|γ|−1y. Then hz, xi =γ ¯|γ|−1hy, xi = |γ| > 0. Let v = xkxk−1, w = zkzk−1. Then kvk = kwk = 1 and hw, vi > 0. Since 0 ≤kv − wk2 = hv, vi − 2Rehw, vi + hw,wi, it follows that hw, vi ≤ 1 (with equality iff v = w, which happens iff x and y are linearly dependent). So |hy, xi| = hz, xi = kxk·kzkhw, vi≤kxk·kzk = kxk·kyk. Facts. (1′) (∀ x ∈ X)kxk ≥ 0; kxk =0 iff x = 0. (2′) (∀ α ∈ C)(∀ x ∈ X) kαxk = |α|·kxk. (3′) (∀ x, y ∈ X) kx + yk≤kxk + kyk. 83 84 Hilbert Spaces Proof of (3′): kx + yk2 = kxk2 +2Rehy, xi + kyk2 ≤kxk2 +2|hy, xi| + kyk2 ≤kxk2 +2kxk·kyk + kyk2. Hence k·k is a norm on X; called the norm induced by the inner product h·, ·i. Definition. An inner product space which is complete with respect to the norm induced by the inner product is called a Hilbert space. n n n Example. X = C . For x =(x1,...,xn) and y =(y1,...,yn) ∈ C , let hy, xi = j=1 yjxj. n 2 2 n P Then kxk = j=1 |xj| is the l -norm on C . qP Examples of Hilbert spaces: • any finite dimensional inner product space 2 ∞ 2 ∞ • l = {(x1, x2, x3,...) : xk ∈ C, k=1 |xk| < ∞} with hy, xi = k=1 ykxk P P 2 Rn • L (A) for any measurable A ⊂ , with inner product hg, fi = A g(x)f(x)dx. R Incomplete inner product space b C([a, b]) with hg, fi = a g(x)f(x)dx R C([a, b]) with this inner product is not complete; it is dense in L2([a, b]), which is complete. Parallelogram Law. Let X be an inner product space. Then (∀ x, y ∈ X) kx + yk2 + kx − yk2 = 2(kxk2 + kyk2). Proof. kx + yk2 + kx − yk2 = hx + y, x + yi + hx − y, x − yi = hx, xi + hx, yi + hy, xi + hy,yi + hx, xi−hx, yi−hy, xi + hy,yi = 2(hx, xi + hy,yi)=2(kxk2 + kyk2). Polarization Identity. Let X be an inner product space. Then (∀ x, y ∈ X) 1 hy, xi = ky + xk2 −ky − xk2 − iky + ixk2 + iky − ixk2 . 4 Proof. Expanding out the implied inner products, one shows easily that ky + xk2 −ky − xk2 =4Rehy, xi and ky + ixk2 −ky − ixk2 = −4ℑhy, xi. 1 2 2 Note: In a real inner product space, hy, xi = 4 (kx + yk −kx − yk ). Remark. In an inner product space, the inner product determines the norm. The polarization identity shows that the norm determines the inner product. But not every norm on a vector space X is induced by an inner product. Hilbert Spaces 85 Theorem. Suppose (X, k·k) is a normed linear space. The norm k·k is induced by an inner product iff the parallelogram law holds in (X, k·k). Proof Sketch. (⇒): see above. (⇐): Use the polarization identity to define h·, ·i. Then immediately hx, xi = kxk2, hy, xi = hx, yi, and hy, ixi = ihy, xi. Use the parallelogram law to show hz, x + yi = hz, xi + hz,yi. Then show hy,αxi = αhy, xi successively for α ∈ N, α−1 ∈ N, α ∈ Q, α ∈ R, and finally α ∈ C. Continuity of the Inner Product. Let X be an inner product space with induced norm k·k. Then h·, ·i : X × X → C is continuous. Proof. Since X × X and C are metric spaces, it suffices to show sequential continuity. Suppose xn → x and yn → y. Then by the Schwarz inequality, |hyn, xni−hy, xi| = |hyn, xn − xi + hyn − y, xi|≤kxn − xk·kynk + kxk·kyn − yk→ 0. Orthogonality. If hy, xi = 0, we say x and y are orthogonal and write x ⊥ y. For any subset A ⊂ X, define A⊥ = {x ∈ X : hy, xi =0 ∀ y ∈ A}. Since the inner product is linear in the second component and continuous, A⊥ is a closed subspace of X. Also (span(A))⊥ = A⊥, A¯⊥ = A⊥, and (span(A))⊥ = A⊥. The Pythagorean Theorem. If x1,...,xn ∈ X and xj ⊥ xk for j =6 k, then n 2 n 2 xj = kxjk . Xj=1 Xj=1 Proof. If x ⊥ y then kx + yk2 = kxk2 +2Rehy, xi + kyk2 = kxk2 + kyk2. Now use induction. Convex Sets. A subset A of a vector space X is called convex if (∀ x, y ∈ A) (∀ t ∈ (0, 1)) (1 − t)x + ty ∈ A. Examples. (1) Every subspace is convex. (2) In a normed linear space, B(x, ǫ) is convex for ǫ> 0 and x ∈ X. (3) If A is convex and x ∈ X, then A + x ≡{y + x : y ∈ A} is convex. Theorem. Every nonempty closed convex subset A of a Hilbert space X has a unique element of smallest norm. 1 Proof. Let δ = inf{kxk : x ∈ A}. If x, y ∈ A, then 2 (x + y) ∈ A by convexity, and by the parallelogram law, kx − yk2 = 2(kxk2 + kyk2) −kx + yk2 ≤ 2(kxk2 + kyk2) − 4δ2. 86 Hilbert Spaces Uniqueness follows: if kxk = kyk = δ, then kx−yk2 ≤ 4δ2 −4δ2 = 0, so x = y. For existence, ∞ choose {yn}n=1 ⊂ A for which kynk→ δ. As n, m →∞, 2 2 2 2 kyn − ymk ≤ 2(kynk + kymk ) − 4δ → 0, so {yn} is Cauchy. By completeness, ∃ y ∈ X for which yn → y, and since A is closed, y ∈ A. Also kyk = lim kynk = δ. Corollary. If A is a nonempty closed convex set in a Hilbert space and x ∈ X, then ∃ a unique closest element of A to x. Proof. Let z be the unique smallest element of the nonempty closed convex set A − x = {y − x : y ∈ A}, and let y = z + x. Then y ∈ A is clearly the unique closest element of A to x. Orthogonal Projections onto Closed Subspaces The Projection Theorem. Let M be a closed subspace of a Hilbert space X. (1) For each x ∈ X, ∃ unique u ∈ M, v ∈ M ⊥ such that x = u + v. (So as vector spaces, X = M ⊕ M ⊥.) Define the operators P : X → M and Q : X → M ⊥ by P : x 7→ u and Q : x 7→ v. (2) If x ∈ M, P x = x and Qx = 0; if x ∈ M ⊥, P x = 0 and Qx = x. (3) P 2 = P , Range(P ) = M, Null Space(P ) = M ⊥; Q2 = Q, Range(Q) = M ⊥, Null Space(Q)= M. (4) P, Q ∈ B(X,X). kP k = 0 if M = {0}; otherwise kP k = 1. kQk = 0 if M ⊥ = {0}; otherwise kQk = 1. (5) P x is the unique closest element of M to x, and Qx is the unique closest element of M ⊥ to x. (6) P + Q = I (obvious by the definition of P and Q). Proof Sketch. Given x ∈ X, x + M is a closed convex set. Define Qx to be the smallest element of x + M, and let P x = x − Qx. Since Qx ∈ x + M, P x ∈ M. Let z = Qx. Suppose y ∈ M and kyk = 1, and let α = hy, zi. Then z − αy ∈ x + M, so kzk2 ≤ kz − αyk2 = kzk2 − αhz,yi − α¯hy, zi + |α|2 = kzk2 −|α|2. So α = 0. Thus z ∈ M ⊥. Since clearly M ∩ M ⊥ = {0}, the uniqueness of u and v in (1) follows. (2) is immediate from the definition. (3) follows from (1) and (2). For x, y ∈ X, αx+βy =(αP x+βPy)+(αQx+βQy), so by uniqueness in (1), P (αx + βy)= αP x + βPy and Q(αx + βy)= αQx + βQy. By the Pythagorean Theorem, kxk2 = kP xk2 + kQxk2, so P, Q ∈ B(X,X) and kP k, kQk ≤ 1. The rest of (4) follows from (2). Fix x ∈ X. If y ∈ X, then kx−yk2 = kP x−Pyk2 +kQx−Qyk2. Hilbert Spaces 87 If y ∈ M, then kx − yk2 = kP x − yk2 + kQxk2, which is clearly minimized by taking y = P x. If y ∈ M ⊥, then kx−yk2 = kP xk2 +kQx−yk2, which is clearly minimized by taking y = Qx. Corollary. If M is a closed subspace of a Hilbert space X, then (M ⊥)⊥ = M. In general, for any A ⊂ X,(A⊥)⊥ = span{A}, which is the smallest closed subspace of X containing A, often called the closed linear span of A. Bounded Linear Functionals and Riesz Representation Theorem Proposition. Let X be an inner product space, fix y ∈ X, and define fy : X → C by ∗ fy(x)= hy, xi. Then fy ∈ X and kfyk = kyk. ∗ Proof. |fy(x)| = |hy, xi|≤ kxk·kyk, so fy ∈ X and kfyk≤kyk. Since |fy(y)| = |hy,yi| = 2 kyk , kfyk≥kyk. So kfyk = kyk. Theorem. Let X be a Hilbert space. ∗ (1) If f ∈ X , then ∃ a unique y ∈ X ∋ f = fy, i.e., f(x)= hy, xi ∀ x ∈ X.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    10 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us