Fresnel Equations

Fresnel Equations

Fresnel Equations Consider reflection and transmission of light at dielectric/dielectric boundary Calculate reflection and transmission coefficients, R and T, as a function of incident light polarisation and angle of incidence using EM boundary conditions s-polarisation p-polarisation n1 = √ε1 θ θ i r µ1 = 1 n = √ε 2 2 θ µ = 1 t 2 s-polarisation E perpendicular to plane of incidence p-polarisation E parallel to plane of incidence Fresnel Equations Snell’s Law Boundary conditions apply across the entire, flat interface (z = 0) Incident, reflected and transmitted waves are like i(ωt - kI.r) EI = (ey cosθi + ez sinθi) EoI e i(ωt - kR.r) ε kI ER = (-ey cosθr + ez sinθr) EoR e n1 = √ 1 θ θ i r kR i(ωt - kT.r) µ = 1 ET = (ey cosθt + ez sinθt) EoT e 1 y To satisfy BC (k . r) = (k . r) = (k . r) I z=0 R z=0 T z=0 ε n2 = √ 2 k (1) wave vectors lie in single plane z θt T µ2 = 1 (2) projection of wave vectors on xy plane is same From (1) θi = θr ω ω θ θ θ µ ε µ ε From (2) kI sin i = kR sin r = kT sin t kI = kR = c 1 1 kT = c 2 2 kI sin θi = kT sinθt becomes sin θi / sinθt = µ2ε2 / µ1ε1 Boundary conditions on E E fields at matter/vacuum interface d Boundary conditions on from Faraday’s Law d = .d E E. ℓ dt B S ∮퐶 − ∫푆 ∆t E.dℓ = EL.dℓL + ER.dℓR (as ∆t 0) ER ∮퐶 B.dS 0 (as ∆t → 0) dℓL θR ∫푆 → → θL θ θ dℓR -EL sin LdℓL + ER sin R dℓR = 0 EL EL sinθL = ER sinθR E||L = E||R E|| continuous Boundary conditions on H H fields at matter/vacuum interface Boundary conditions on H from Ampère’s Law ∇ x H = jfree + ∂D/∂t ∂D ∇ x H .dS = j + .dS = H.dℓ free ∂t � � � ∂D , ∂ /∂t are everywhere finite, so as as ∆t 0, .d 0 D D ∂t S → ∫ → ∆t For materials of finite conductivity, jfree is finite, so j .dS 0 as ∆t 0 HR free dℓL θR ∫ → → θL For materials of infinite conductivity, jfree is infinite, dℓR HL so j .dS j dℓ as ∆t 0 free free,surface j is surface current per unit length free∫,surface → → Boundary conditions on H .d = j dℓ H ℓ free,surface � -HL sinθLdℓL + HR sinθR dℓR = j dℓ free,surface HR sinθR dℓ = HL sinθL dℓ + j dℓ free,surface H||R = H||L + jfree,surface Infinite conductivity at interface H||R = H||L Finite conductivity at interface ∆t HR dℓL θR θL dℓR HL Boundary conditions on B B field at matter/vacuum interface ∇. B = 0 ⇒ ∫B.dS = 0 S B1 cosθ1 dS −B2 cosθ2 dS = 0 ⇒ B1⊥ = B2⊥ θ1 1 B1 2 B2 θ2 dS1,2 Boundary conditions on D D field at matter/vacuum interface ∇.D = ρfree ∫D.dS = ∫ρfree dv ∫ D.dS = 0 No free charges at interface ∫ D.dS = ∫ ∇.D dv = σfree dS Free charge density σfree at interface θ1 ∫ D1. dS1 + ∫D2.dS2 = ∫ρfree dv 1 D ┴1 dS - D ┴2 dS = σfree dS dS1 = dS2 = dS D1 D┴1 = D┴2 No interface free charges 2 D2 D┴1 - D┴2 = σfree Interface free charges θ2 dS1,2 Boundary conditions summary E||L = E||R E|| continuous B┴1 = B┴2 B┴ continuous D┴1 = D┴2 D┴ continuous No interface free charges D┴1 - D┴2 = σfree Interface free charges H||R = H||L H|| continuous Finite conductivity at interface H||R = H||L + jfree,surface Infinite conductivity at interface Fresnel Equations Reflection coefficient R and Transmission coefficient T 2 2 2 ∇ E - µoεoε ∂ E/∂t = 0 i(ωt - k.r) E(r, t) = Eo ex Re{e } k = ω√(µoµεoε) ∇ x E = -i k x E take curl of plane wave E ∇ x E = - ∂B/∂t Faraday’s law - ∂B/∂t = -iω B time harmonic, plane wave B -iω B = -i k x E B = k x E / ω = k ek x E / ω = ω√(µoµεoε) ek x E / ω = √(µε) ek x E / c Fresnel Equations B = k x E / ω = k ek x E / ω = ω√(µoµεoε) ek x E / ω = √(µε) ek x E / c N = E x H = E x B / µoµ = E x (√(µoµεoε) ek x E) / µoµ 2 N = E √(εoε /µoµ) 2 2 R = reflected energy / incident energy = ER √(εoε1 /µoµ1) / EI √(εoε1 /µoµ1) 2 2 = ER / EI 2 2 T = transmitted energy / incident energy = ET √(εoε2 /µoµ2) / EI √(εoε1 /µoµ1) 2 2 = ET / EI n2 / n1 (if µ1 = µ2 = 1) 2 2 R = ER / EI 2 2 T = ET / EI n2 / n1 Fresnel Equations Fields Normal Incidence i(ωt - k1z) n = √ε n = √ε EI = ex EoI e 1 1 x 2 2 µ1 = 1 µ2 = 1 i(ωt - k1z) kI = kR = k1 kT = k2 BI = ey BoI e i(ωt + k1z) ER = ex EoR e ER BR EI k ET z I ω k kT i( t + k1z) R BI BT BR = -ey BoR e y i(ωt - k2z) ET = ex EoT e Boundary conditions i(ωt - k2z) BT = ey BoT e E||1 = E||2 EoI + EoR = EoT B┴ = D┴ = 0 (normal incidence) H||1 = H||2 (BoI - BoR) / µ1µo = BoT / µ2µo B = µµo H µ1 = µ2 = 1 Fresnel Equations BoI = n1 EoI / c BoR = n1 EoR / c BoT = n2 EoT / c n1 (EoI - EoR) = n2 EoT from BoI - BoR = BoT when µ1 = µ2 = 1 EoI + EoR = EoT EoT = EoI + EoR = n1(EoI - EoR) / n2 Eliminate EoT EoR (n1 + n2) = EoI (n1 - n2) EoR / EoI = (n1 - n2) / (n1 + n2) EoR / EoI < 0 if n1 < n2) => π change of phase Fresnel Equations n1 (EoI - EoR) = n2 EoT Eliminate EoR EoI + EoR = EoT EoR = EoT - EoI = EoI - n2 EoT / n1 EoT (n1 + n2) = 2n1 EoI EoT / EoI = 2n1 / (n1 + n2) 2 2 2 2 2 2 (EoR / EoI) + (EoT / EoI) = (n1 - n2) / (n1 + n2) + 4n1 / (n1 + n2) ≠ 1! Fresnel Equations Reflectivity 2 2 2 R┴ = (EoR / EoI) = (n1 - n2) / (n1 + n2) Transmittivity 2 2 2 2 T┴ = (EoT / EoI) √(µ2ε2) / √(µ1ε1) = 4n1 / (n1 + n2) (n2 / n1) = 4n1n2 / (n1 + n2) Energy conservation 2 2 2 R┴ + T┴ = (n1 - n2) / (n1 + n2) + 4n1n2 / (n1 + n2) = 1 Fresnel Equations Fields Off-normal incidence, s-polarisation i(ωt - k1.r) EI EI = ex EoI e ER kR BI kI θ θ i(ωt - k1.r) n1 = √ε1 BI = (ey cos i + ez sin i) BoI e BR µ1 = 1 θi θr i(ωt + k .r) = E e 1 kI = kR = k1 ER ex oR y = (- cosθ + sinθ ) B ei(ωt + k1.r) n = √ε BR ey r ez r oR 2 2 θ µ = 1 t ET 2 i(ωt - k2.r) BT ET = ex EoT e kT = k2 z kT i(ωt - k2.r) Boundary conditions BT = (ey cosθt + ez sinθt) BoT e E||1 = E||2 EoI + EoR = EoT H||1 = H||2 (BoI - BoR) cosθi / µ1µo = BoT cosθt / µ2µo µ1 = µ2 = 1 Fresnel Equations B = √(µε) k x E / ck = n / (ck) k x E in uniform dielectric BoI = n1 EoI / c BoR = n1 EoR / c BoT = n2 EoT / c n1 (EoI - EoR) cosθi = n2 EoT cosθt from (BoI - BoR) cosθi / µ1µo = BoT cosθt / µ2µo with µ1 = µ2 = 1 EoI + EoR = EoT Eliminate EoT EoT = EoI + EoR = n1(EoI - EoR) cosθi / (n2 cosθt ) EoR (n1 cosθi + n2 cosθt) = EoI (n1 cosθi - n2 cosθt) EoR / EoI = (n1 cosθi - n2 cosθt) / (n1 cosθi + n2 cosθt) Fresnel Equations n1 cosθi (EoI - EoR) = n2 cosθt EoT Eliminate EoR EoI + EoR = EoT EoR = EoT - EoI = EoI - n2 cosθt EoT / (n1 cosθi) EoT (n1 cosθi + n2 cosθt) = 2n1 cosθi EoI EoT / EoI = 2n1 cosθi / (n1 cosθi + n2 cosθt) Reflectivity 2 2 2 RS = (EoR / EoI) = (n1 cosθi - n2 cosθt) / (n1 cosθi + n2 cosθt) Fresnel Equations Transmittivity 2 TS = (EoT / EoI) √(µ2ε2) cosθt / √(µ1ε1) cosθi 2 2 2 = 4n1 cos θi / (n1cosθi + n2cosθt) (n2cosθt / n1cosθi) 2 = 4n1n2 cosθi cosθt / (n1cosθi + n2cosθt) Energy conservation 2 2 2 2 R+T =(n1cosθi - n2cosθt) /(n1cosθi + n2cosθt) + 4n1n2cos θi /(n1cosθi + n2cosθt) 2 2 2 2 2 = (n1 cos θi - 2n1n2cosθi cosθt+ n2 cos θt + 4n1n2cosθi cosθt) /(n1cosθi + n2cosθt) = 1 Fresnel Equations Off-normal incidence, p-polarisation Fields i(ωt - k1.r) X BI EI = (ey cosθi + ez sinθi) EoI e BR kR EI kI X i(ωt - k1.r) n1 = √ε1 BI = -ex BoI e ER µ1 = 1 θi θr i(ωt + k1.r) ER = (-ey cosθr + ez sinθr) EoR e y B = -e B ei(ωt + k1.r) n2 = √ε2 R x oR θt µ = 1 X BT 2 ω ET E = (e cosθ + e sinθ ) E ei( t - k2.r) z kT T y t z t oT Boundary conditions i(ωt - k2.r) BT = -ex BoT e E||1 = E||2 (EoI - EoR) cosθi = EoT cosθt H||1 = H||2 (BoI + BoR) / µ1µo = BoT / µ2µo µ1 = µ2 = 1 Fresnel Equations B = √(µε) k x E / ck = n / (ck) k x E in uniform dielectric BoI = n1 EoI / c BoR = n1 EoR / c BoT = n2 EoT / c n1 (EoI + EoR) = n2 EoT from (BoI + BoR) / µ1µo = BoT / µ2µo with µ1 = µ2 = 1 (EoI - EoR) cosθi = EoT cosθt EoT = (EoI + EoR) n1 / n2 = (EoI - EoR) cosθi / cosθt Eliminate EoT EoR (n1 / n2 + cosθi / cosθt) = EoI (- n1 / n2 + cosθi / cosθt) EoR / EoI = (- n1 / n2 + cosθi / cosθt) / (n1 / n2 + cosθi / cosθt) = (n2cosθi - n1cosθt) / (n2cosθi + n1cosθt) Fresnel Equations Reflectivity 2 2 2 RP = (EoR / EoI) = (n2cosθi - n1cosθt) / (n2cosθi + n1cosθt) EoR = EoT n2 / n1 - EoI = EoI - EoT cosθt / cosθi Eliminate EoR EoT (n2 / n1 + cosθt / cosθi) = 2EoI EoT / EoI = 2EoI / (n2 / n1 + cosθt / cosθi) EoT / EoI = 2 / (n2 / n1 + cosθt / cosθi) = 2n1cosθi / (n1cosθt +n2cosθi) Fresnel Equations Transmittivity 2 TP = (EoT / EoI) √(µ2ε2) cosθt / √(µ1ε1) cosθi 2 2 2 = 4n1 cos θi n2cosθt / (n1cosθt + n2cosθi) n1cosθi 2 = 4n1cosθi n2cosθt / (n1cosθt + n2cosθi) Energy conservation 2 2 RP + TP = ((n2cosθi - n1cosθt) + 4n1cosθi n2cosθt ) / (n2cosθi + n1cosθt) = 1 Fresnel Equations Normal incidence 2 2 R┴ = (n1 - n2) / (n1 + n2) 2 T┴ = 4 n1n2 / (n1 + n2) S-polarisation 2 2 RS = (n1cosθi - n2cosθt) / (n1cosθi + n2cosθt) 2 TS = 4n1n2 cosθi cosθt / (n1cosθi + n2cosθt) P-polarisation 2 2 RP = (n2cosθi - n1cosθt) / (n2cosθi + n1cosθt) 2 TP = 4n1n2 cosθi cosθt / (n1cosθt + n2cosθi) Energy conservation R + T = 1 in each case Fresnel Equations Light polarisation by reflection - the Brewster angle 2 2 RS = (n1cosθi - n2cosθt) / (n1cosθi + n2cosθt) 2 2 RP = (n2cosθi - n1cosθt) / (n2cosθi + n1cosθt) If n1 < n2 (e.g.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    27 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us