Mixed Axion/Axino Cold Dark Matter in SUSY: with Implications for LHC

Mixed Axion/Axino Cold Dark Matter in SUSY: with Implications for LHC

Mixed axion/axino cold dark matter in SUSY: with implications for LHC Howard Baer University of Oklahoma OUTLINE ⋆ old ideas from 1970s ⋆ strong CP problem and PQWW solution ⋆ the PQMSSM ⋆ axion/axino CDM ⋆ mSUGRA (CMSSM) ⋆ Effective SUSY ⋆ Yukawa-unified SUSY Howie Baer, GGI LHC mini workshop, June 10, 2010 1 Old ideas from the dawn of time: (1970s) ⋆ renormalizable gauge theories ⋆ QCD ⋆ the Standard Model ⋆ supersymmetry ⋆ GUTs ⋆ superstrings ⋆ see-saw neutrinos ⋆ PQ strong CP solution Howie Baer, GGI LHC mini workshop, June 10, 2010 2 Origin of strong CP problem ⋆ QCD U(2)V U(2)A global symmetry (2 light quarks) ∋ × ⋆ U(2)V = SU(2)I U(1)B realized; U(2)A broken spontaneously × ⋆ expect 4 Goldstone bosons: πs and η, but instead mη mπ: QCD does not ≫ respect somehow U(1)A (Weinberg) ⋆ t’Hooft resolution: QCD θ vacuum theory not U(1)A symmetric, and ⇒ m m explained η ≫ π 2 gs µν ⋆ Generate additional term to QCD Lagrangian: θ F F˜Aµν L∋ 32π A violates P and T ; conserves C • 2 gs µν ⋆ In addition, weak interactions Arg detM F F˜Aµν ⇒L∋ 32π A θ¯ = θ + Arg detM • ⋆ experiment: neutron EDM θ¯ < 10−10 ⇒ ∼ ⋆ How can this be? The strong CP problem Howie Baer, GGI LHC mini workshop, June 10, 2010 3 Solutions to the strong CP problem ⋆ Anthropic: θ¯ luckily small ⋆ Spontaneously broken CP : induced θ¯ is small (loop level) ⋆ a new chiral symmetry UP Q(1) exists (Peccei-Quinn); UP Q(1) spontaneously broken at scale f ( 109 1012 GeV) a ∼ − ⋆ Goldstone boson field a(x), the axion must exist (Weinberg, Wilczek) 2 1 µ a gs µν ˜ ⋆ ∂ a∂µa + ξ 2 F FAµν + int L∋− 2 fa 32π A L ¯ a ⋆ Veff (1 cos(θ + ξ )) ∼− − fa ⋆ axion field settles to minimum of potential: a = fa θ¯ h i − ξ ⋆ strong CP problem solved! 2 2 ∂ Veff ⋆ m = 2 a h ∂a i Howie Baer, GGI LHC mini workshop, June 10, 2010 4 Axion cosmology ⋆ Axion field eq’n of motion: θ = a(x)/fa 1 ∂V (θ) – θ¨ + 3H(T )θ˙ + 2 = 0 fa ∂θ – V (θ)= m2(T )f 2(1 cos θ) a a − – Solution for T large, m (T ) 0: a ∼ fa /N (GeV) θ = const. 12 11 10 9 10 10 10 10 – 0 ma(T ) turn-on 1 GeV 10 2 ∼ WMAP 5: Ω h = 0.110 ± 0.006 -1 CDM ⋆ a(x) oscillates, 10 -2 10 creates axions with ~p 0: -3 ∼ 10 (vacuum mis-alignment) 2 h production via vacuum mis-alignment a -4 Ω 10 −6 7/6 -5 × 10 -5 -4 -3 2 1 6 10 eV 2 2 10 10 10 ⋆ Ωah θ h m (eV) 2 m i a ∼ h a i > 9 ⋆ astro bound: stellar cooling fa 10 GeV ⇒ ∼ Howie Baer, GGI LHC mini workshop, June 10, 2010 5 We also know MSSM (plus gauge singlets) is compelling effective theory between Mweak and MGUT Howie Baer, GGI LHC mini workshop, June 10, 2010 6 Most analyses work in mSUGRA (CMSSM) model m , m , A , tan β, sign(µ) • 0 1/2 0 Howie Baer, GGI LHC mini workshop, June 10, 2010 7 2 Results of χ fit using τ data for aµ: β µ > β µ > mSugra with tan = 10, A0 = 0, 0 mSugra with tan = 54, A0 = 0, 0 2000 2000 14 8 1750 1750 12 not LSP not LSP 1 1 ~ ~ Ζ Ζ 6 1500 1500 10 1250 1250 4 8 1000 1000 /DOF) /DOF) (GeV) (GeV) 2 χ 6 2 χ 1/2 1/2 m m ln( 750 750 ln( 4 0 500 500 2 250 No REWSB -2 250 No REWSB 0 0 0 0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000 m0 (GeV) m0 (GeV) mh=114.1GeV LEP2 excluded mh=114.1GeV LEP2 excluded SuperCDMS CDMSII CDMS SuperCDMS CDMSII CDMS HB, C. Balazs: JCAP 0305, 006 (2003) • numerous recent χ2, MCMC fits to find preferred regions • Howie Baer, GGI LHC mini workshop, June 10, 2010 8 2 e 0 1 2 ΩZ1 h as surface in m vs. m / space tan β = 10, A = 0, µ> 0 (HB, A. Box) • 0 Howie Baer, GGI LHC mini workshop, June 10, 2010 9 Fine-tuning in mSUGRA with neutralino CDM e 2 ⋆ contours of ΩZ1 h 2 ∂ log Ω e h ⋆ regions of fine-tune: ∆ Z1 : (HB, A. Box) ≡ ∂ log ai Howie Baer, GGI LHC mini workshop, June 10, 2010 10 Fine-tuning zoomed in stau-co-annihilation e 2 ⋆ contours of ΩZ1 h 2 ∂ log Ω e h ⋆ regions of fine-tune: ∆ Z1 ≡ ∂ log ai Howie Baer, GGI LHC mini workshop, June 10, 2010 11 General scan over 19 param. MSSM ⋆ dimensionful param’s defined at MGUT m , m , m , m , m : 0 3500 GeV • Q1 U1 D1 L1 E1 → m , m , m , m , m : 0 3500 GeV • Q3 U3 D3 L3 E3 → M , M , M : 0 3500 GeV • 1 2 3 → A , A , A : 3500 3500 GeV • t b τ − → m , m : 0 3500 GeV • Hu Hd → tan β : 2 60 • → mf > 103.5 GeV ⋆ W1 f ⋆ mW1 > 91.9 GeV (wino-like) ⋆ mh > 111 GeV Howie Baer, GGI LHC mini workshop, June 10, 2010 12 8 10 Bino Wino 6 10 Higgsino Mixed 4 10 2 h 2 Ω 10 0 10 -2 10 -4 10 0 400 800 1200 1600 m~ Z1 Howie Baer, GGI LHC mini workshop, June 10, 2010 13 General MSSM 19 param. scan histogram of models vs. Ω e h2 • Z1 Bino 800 Wino Higgsino Mixed 600 400 200 Total Number of Models 0 -3 -2 -1 0 1 2 3 4 5 6 7 8 10 10 10 10 10 10 10 10 10 10 10 10 2 Ωh Howie Baer, GGI LHC mini workshop, June 10, 2010 14 Why WIMP miracle really is a miracle for SUSY histogram of models vs. Ω e h2 with m e < 500 GeV • Z1 Z1 Bino 300 Wino Higgsino Mixed 200 100 Total Number of Models 0 -3 -2 -1 0 1 2 3 4 5 6 7 8 10 10 10 10 10 10 10 10 10 10 10 10 2 Ωh Howie Baer, GGI LHC mini workshop, June 10, 2010 15 3 Gravitinos: spin- 2 partner of graviton gravitino problem in generic SUGRA models: overproduction of G˜ followed by • late G˜ decay can destroy successful BBN predictions: upper bound on TR (see Kawasaki, Kohri, Moroi, Yotsuyanagi; Cybert, Ellis, Fields, Olive) Howie Baer, GGI LHC mini workshop, June 10, 2010 16 Gravitinos as dark matter: again the gravitino problem neutralino production in generic SUGRA models: followed by late time • Z G˜ + Xdecays can destroy successful BBN predictions: 1 → e (see Kawasaki, Kohri, Moroi, Yotsuyanagi) Howie Baer, GGI LHC mini workshop, June 10, 2010 17 Various leptogenesis scenarios Upper bound on T from BBN is below that for successful thermal • R leptogenesis: need T > 1010 GeV (Buchmuller, Plumacher) R ∼ Alternatively, one may have non-thermal leptogenesis where inflaton • φ N N decay (Lazarides, Shafi; Kumekawa, Moroi, Yanagida) → i i additional source of N in early universe allows lower T : • i R nB −11 TR 2mN1 mν3 8.2 10 6 δeff (1) s ≃ × × 10 GeV mφ 0.05 eV Also, AD leptogenesis in φ = √Hℓ D-flat direction: T 106 108 GeV • R ∼ − allowed (Dine, Randall, Thomas; Murayama, Yanagida) WMAP observation: n /s 0.9 10−10 T > 106 GeV • b ∼ × ⇒ R ∼ Howie Baer, GGI LHC mini workshop, June 10, 2010 18 PQMSSM: Axions + SUSY Axino a˜ dark matter ⇒ axino is spin- 1 element of axion supermultiplet (R-odd; can be LSP) • 2 – Raby, Nilles, Kim – Rajagopal, Wilczek, Turner m model dependent: keV GeV • a˜ → f 12 1 a /N = 10 GeV Z1 aγ˜ 10 • → 0 10 e f /N 11 non-thermal a˜ production via Z1 decay: -1 a = 10 GeV • 10 -2 (s) axinos inherit neutralino numbere density τ 10 f / 10 -3 a N = 10 GeV • 10 NTP 2 ma˜ 2 e -4 Ωa˜ h = e Ω 1 h : 10 mZ1 Z • f /N = 109 -5 a GeV – 10 Covi, Kim, Kim, Roszkowski 50 60 70 80 90 m~χ0 (GeV) 1 Howie Baer, GGI LHC mini workshop, June 10, 2010 19 Thermally produced axinos ⋆ If TR < fa, then axinos never in thermal equilibrium in early universe ⋆ Can still produce a˜ thermally via radiation off particles in thermal equilibrium ⋆ Brandenberg-Steffen calculation: 11 2 TP 2 6 1.108 10 GeV ma˜ TR Ωa˜ h 5.5gs ln 4 (2) ≃ gs fa/N 0.1 GeV 10 GeV ΩTP 2 ~a h = 0.001 (solid), 0.01 (dashed), 0.1 (dashed-dotted) m~a (GeV) = 0.0001 (purple), 0.01 (green), 1 (maroon) 9 10 8 10 7 10 2 = 0.1 TP h Ω~a 6 10 (GeV) R T 5 2 = 0.01 TP 10 ~ = 0.0001 (GeV), h m a Ω~a 4 10 3 = 0.01 (GeV), 10 m~a 2 10 9 10 11 12 10 10 10 10 fa /N (GeV) Howie Baer, GGI LHC mini workshop, June 10, 2010 20 mSUGRA model with mixed axion/axino CDM: ma˜ fixed ⋆ (m0, m1/2, A0, tan β,sgn(µ)) = (1000 GeV, 300 GeV, 0, 10, +1) 2 TP 2 NTP 2 ⋆ Ωah + Ωa˜ h + Ωa˜ h = 0.11 ⋆ model with mainly axion CDM seems favored! ma~ = 100 keV (solid), 1 MeV (dashed) 0 7 10 2 10 WMAP Ω h -1 CDM 10 ΩTP 2 ~a h -2 6 10 10 -3 Ω 2 10 ah -4 5 10 10 NTP 2 2 Ω~ h h -5 10 a Ω (GeV) R -6 T 4 10 10 -7 10 -8 3 10 10 -9 10 (a) (b) -10 2 10 9 10 11 12 10 9 10 11 12 10 10 10 10 10 10 10 10 fa /N (GeV) fa /N (GeV) Howie Baer, GGI LHC mini workshop, June 10, 2010 21 mSUGRA p-space with mainly axion cold DM ⋆ contours of log10 TR: mSUGRA w/ tan β = 10, A0 = 0 > 6 ⋆ TR 10 consistent with non-thermal leptogenesis ∼ ⋆ most dis-favored mSUGRA regions with neutralino DM are most favored by mSUGRA with mainly axion DM! (HB, Box, Summy) Howie Baer, GGI LHC mini workshop, June 10, 2010 22 Axion/axino relic density in mSUGRA Howie Baer, GGI LHC mini workshop, June 10, 2010 23 Fine-tuning for mainly axion CDM in mSUGRA a e 2 ⋆ ).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    43 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us