
<p><strong>EE143 – Fall 2016 </strong><br><strong>Microfabrication Technologies </strong></p><p><strong>Lecture 6: Thin Film Deposition </strong><br><strong>Reading: Jaeger Chapter 6 </strong></p><p><strong>Prof. Ming C. Wu </strong><a href="mailto:[email protected]" target="_blank"><strong>[email protected] </strong></a><br><strong>511 Sutardja Dai Hall (SDH) </strong></p><p>1</p><p><strong>Vacuum Basics </strong></p><p>• <strong>Units </strong></p><p>– <strong>1 atmosphere = 760 torr = 1.013x10</strong><sup style="top: -0.25em;"><strong>5 </strong></sup><strong>Pa </strong>– <strong>1 bar = 105 Pa = 750 torr </strong>– <strong>1 torr = 1 mm Hg </strong>– <strong>1 mtorr = 1 micron Hg </strong>– <strong>1 Pa = 7.5 mtorr = 1 newton/m2 </strong>– <strong>1 torr = 133.3 Pa </strong></p><p>• <strong>Ideal as Law: PV = NkT </strong></p><p>– <strong>k = 1.38E-23 Joules/K </strong><br><strong>= 1.37E-22 atm cm</strong><sup style="top: -0.25em;"><strong>3</strong></sup><strong>/K </strong><br>– <strong>N = # of molecules (note the typo in your book) </strong>– <strong>T = absolute temperature in K </strong></p><p>2</p><p>1</p><p><strong>Dalton’s Law of Partial Pressure </strong></p><p>• <strong>For mixture of non-reactive gases in a common vessel, each gas exerts its pressure independent of others </strong></p><p>• ꢀ<sub style="top: 0.2042em;">ꢁꢂꢁꢃꢄ </sub>= ꢀ<sub style="top: 0.2042em;">ꢅ </sub>+ ꢀ<sub style="top: 0.2042em;">ꢆ </sub>+ ⋯ . +ꢀ<sub style="top: 0.2042em;">ꢇ </sub></p><p>– <strong>Total pressure = Sum of partial pressures </strong></p><p>• ꢇ<sub style="top: 0.2042em;">ꢁꢂꢁꢃꢄ </sub>= ꢇ<sub style="top: 0.2042em;">ꢅ </sub>+ ꢇ<sub style="top: 0.2042em;">ꢆ </sub>+ ⋯ . +ꢇ<sub style="top: 0.2042em;">ꢇ </sub></p><p>– <strong>Total number of molecules = sum of individual molecules </strong></p><p>• <strong>Ideal gas law observed by each gas, as well as all gases </strong></p><p>– ꢀ<sub style="top: 0.17em;">ꢅ</sub>ꢈ = ꢇ<sub style="top: 0.17em;">ꢅ</sub>ꢉꢊ – ꢀ<sub style="top: 0.17em;">ꢆ</sub>ꢈ = ꢇ<sub style="top: 0.17em;">ꢆ</sub>ꢉꢊ – ꢀ<sub style="top: 0.17em;">ꢇ</sub>ꢈ = ꢇ<sub style="top: 0.17em;">ꢇ</sub>ꢉꢊ </p><p>3</p><p><strong>Average Molecular Velocity </strong></p><p>• <strong>Assumes Maxwell- Boltzman Velocity Distribution </strong></p><p>ꢌꢉꢊ <br>3ꢋ = <br>ꢍꢎ </p><p>• <strong>where m = molecular weight of gas molecule </strong></p><p>4</p><p>2</p><p><strong>Mean Free Path between collisions </strong></p><p>ꢉꢊ <br>ꢏ = <br>ꢆꢍꢐ<sup style="top: -0.3002em;">ꢆ</sup>ꢀ </p><p>• <strong>where </strong></p><p>– <strong>K = Boltzmann constant </strong>– <strong>T = temperature in Kelvin </strong>– <strong>d = molecular diameter </strong>– <strong>P = pressure </strong></p><p>• <strong>For air at 300K </strong></p><p></p><ul style="display: flex;"><li style="flex:1">ꢓ. ꢓ </li><li style="flex:1">ꢔ. ꢔꢕ </li></ul><p></p><ul style="display: flex;"><li style="flex:1">ꢏ(ꢑꢒ ꢎꢎ) = </li><li style="flex:1">=</li></ul><p>ꢀ (ꢑꢒ ꢀꢃ) ꢀ (ꢑꢒ ꢁꢂꢖꢖ) </p><p>5</p><p><strong>Impingement Rate </strong></p><p>• ꢗ = <strong>number of molecules striking a surface per unit area per unit time 1/cm</strong><sup style="top: -0.3333em;"><strong>2</strong></sup><strong>-sec] </strong></p><p>ꢀ<br>ꢗ = ꢘ. ꢕ×ꢅꢔ<sup style="top: -0.3663em;">ꢆꢆ </sup><br>ꢙꢊ </p><p>• <strong>where </strong></p><p>– <strong>P = pressure in torr </strong>– <strong>M = molecular weight </strong></p><p>6</p><p>3</p><p><strong>Question </strong></p><p>• <strong>How long does it take to form a monolayer of gas on the surface of a substrate? </strong></p><p>7</p><p><strong>Vacuum Basics (Cont.) </strong></p><p><strong>At 25</strong><sup style="top: -0.25em;"><strong>o</strong></sup><strong>C </strong></p><p><strong>P</strong></p><p><strong>I</strong></p><p><strong>M</strong></p><p><strong>1 µm/min </strong></p><p><strong>Plasma Processing </strong><br><strong>Residual Vacuum </strong><br><strong>CVD </strong></p><p><strong>Pressure (Torr) </strong></p><p>8</p><p>4</p><p><strong>Thin Film Deposition </strong></p><p><strong>Physical Methods </strong><br><strong>Chemical Methods </strong></p><p><strong>Evaporation Sputtering </strong><br><strong>Chemical Vapor Deposition (CVD) Atomic Layer Deposition (ALD) </strong></p><p><strong>Film substrate </strong></p><p>• <strong>Applications </strong></p><p>– <strong>Metalization (e.g., Al, TiN, W, Silicide) </strong>– <strong>Polysilicon </strong>– <strong>Dielectric layers (SiO</strong><sub style="top: 0.1667em;"><strong>2</strong></sub><strong>, Si</strong><sub style="top: 0.1667em;"><strong>3</strong></sub><strong>N</strong><sub style="top: 0.1667em;"><strong>4</strong></sub><strong>) </strong></p><p>9</p><p><strong>Evaporation </strong></p><p><strong>wafer wafer </strong></p><p><strong>Al vapor </strong><br><strong>Al </strong><br><strong>Al vapor </strong></p><p><strong>deposited </strong></p><p><strong>Al fill </strong></p><p><strong>deposited Al fill </strong></p><p><strong>ecrucible is water cooled heating hot boat (e.g. W) electron </strong></p><p><strong>source </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Thermal Evaporation </strong></li><li style="flex:1"><strong>Electron Beam Evaporation </strong></li></ul><p></p><p><strong>as Pressure: 10</strong><sup style="top: -0.25em;"><strong>-5 </strong></sup><strong>Torr </strong></p><p>10 </p><p>5</p><p><strong>Evaporation: Filament & Electron </strong><br><strong>Beam </strong></p><p><strong>(a) Filament evaporation with loops of wire hanging from a heated filament </strong></p><p><strong>(b) Electron beam is focused on metal charge by a magnetic field </strong></p><p>11 </p><p><strong>Sputtering </strong></p><p><strong>Negative Bias ( kV) </strong></p><p><strong>I</strong></p><p><strong>Al target </strong></p><p><strong>Ar</strong><sup style="top: -0.1667em;"><strong>+ </strong></sup><strong>Ar</strong><sup style="top: -0.1667em;"><strong>+ </strong></sup></p><p><strong>Al </strong><br><strong>Al </strong></p><p><strong>Ar plasma </strong></p><p><strong>Al </strong></p><p><strong>Deposited Al film </strong></p><p><strong>wafer </strong></p><p><strong>heat substrate to ~ 00</strong><sup style="top: -0.25em;"><strong>o</strong></sup><strong>C (optional) </strong></p><p>•</p><p><strong>as pressure 1 to 10 mTorr </strong><br>• <strong>Deposition rate = constant </strong>× ꢚ × ꢛ </p><p>– <strong>Where </strong>ꢚ <strong>= ion current </strong></p><p>–</p><p>ꢛ <strong>= sputtering yield </strong></p><p>12 </p><p>6</p><p><strong>Plasma Basics </strong></p><p>13 </p><p><strong>Basic Properties of Plasma </strong></p><p>• <strong>The bulk of plasma contains equal concentrations of ions and electrons. </strong></p><p><strong>»</strong></p><p>• <strong>Electric potential is constant inside bulk of plasma. The voltage drop is mostly across the sheath regions </strong></p><p>• <strong>Plasma used in IC processing is a “weak” plasma, containing mostly neutral atoms/molecules. </strong></p><p>– <strong>Degree of ionization is </strong></p><p><strong>»</strong></p><p><strong>10</strong><sup style="top: -0.25em;"><strong>-3 </strong></sup><strong>to 10</strong><sup style="top: -0.25em;"><strong>-6 </strong></sup></p><p>14 </p><p>7</p><p><strong>Outcomes of Plasma bombardment </strong></p><p>15 </p><p><strong>Sputtering Yield </strong></p><p><em>Al </em><br><em>Ar </em></p><p><em>Al </em></p><p><em>Al </em></p><p>Sputtering ieel S </p><p><em># f jej e cj e c rgjc c om </em></p><p><em>S </em>º </p><p><em>in e oing i n n </em></p><p></p><ul style="display: flex;"><li style="flex:1">0.1 </li><li style="flex:1">S</li><li style="flex:1">0</li></ul><p></p><p>16 </p><p>8</p><p><strong>Sputtering of Compound Targets </strong></p><p><strong>A</strong><sub style="top: 0.25em;"><strong>x</strong></sub><strong>B</strong><sub style="top: 0.25em;"><strong>y </strong></sub></p><p><strong>Ar</strong><sup style="top: -0.3333em;"><strong>+ </strong></sup></p><p><strong>A</strong><sub style="top: 0.25em;"><strong>flux </strong></sub><strong>B</strong><sub style="top: 0.25em;"><strong>flux </strong></sub></p><p><strong>Target </strong></p><p><strong>¹</strong></p><p><strong>Because S</strong><sub style="top: 0.1667em;"><strong>A </strong></sub><strong>S</strong><sub style="top: 0.1667em;"><strong>B</strong></sub><strong>, target surface will acquire a composition A</strong><sub style="top: 0.1667em;"><strong>x’</strong></sub><strong>B</strong><sub style="top: 0.1667em;"><strong>y’ </strong></sub><strong>at steady state. </strong></p><p>17 </p><p><strong>Reactive Sputtering </strong></p><p><strong>Sputtering deposition </strong></p><p><strong>Ti Target </strong></p><p><strong>while introducing a reactive gas into the plasma. </strong></p><p><strong>N</strong><sub style="top: 0.25em;"><strong>2 </strong></sub><strong>plasma </strong></p><p><strong>Example: </strong>• <strong>Formation of TiN </strong></p><p><strong>+</strong></p><p>– <strong>Sputter a Ti target with a nitrogen plasma </strong></p><p><strong>Ti, N</strong><sub style="top: 0.25em;"><strong>2 </strong></sub><br><strong>TiN </strong></p><p><strong>Substrate </strong></p><p>18 </p><p>9</p><p><strong>Step Coverage Problem with PVD </strong></p><p>• <strong>Both evaporation and sputtering have directional fluxes </strong></p><p><strong>“geometrical shadowing” </strong></p><p><strong>Flux film </strong></p><p><strong>step film </strong></p><p><strong>wafer </strong></p><p>19 </p><p><strong>Step Coverage concerns in contacts </strong></p><p>20 </p><p>10 </p><p><strong>Methods to Minimize Step Coverage </strong><br><strong>Problems </strong></p><p>• <strong>Rotate + Tilt substrate during deposition </strong>• <strong>Elevate substrate temperature (why?) </strong>• <strong>Use large-area deposition source </strong></p><p><strong>Sputtering Target </strong></p><p>21 </p><p><strong>Advantages of Sputtering over </strong><br><strong>Evaporation </strong></p><p>• <strong>For multi-component thin films, sputtering gives better composition control using compound targets. </strong></p><p>– <strong>Evaporation depends on vapor pressure of various vapor components and is difficult to control. </strong></p><p>• <strong>Better lateral thickness uniformity </strong></p><p>– <strong>Superposition of multiple point sources </strong></p><p>Sputtering Target Superposition of all small-area sources </p><p>Profile due to one small-area source </p><p>22 </p><p>11 </p><p><strong>Chemical Vapor Deposition (CVD) </strong></p><p><strong>source chemical reaction film substrate </strong></p><p><strong>More conformal deposition than PVD </strong></p><p><strong>t</strong></p><p><strong>Shown here is 100% </strong></p><p><strong>t</strong></p><p><strong>conformal deposition </strong></p><p><strong>step </strong></p><p>23 </p><p><strong>LPCVD Examples </strong></p><p>• <strong>SiO</strong><sub style="top: 0.1667em;"><strong>2 </strong></sub></p><p>ꢛꢑꢜ<sub style="top: 0.2042em;">ꢝ </sub>+ ꢞ<sub style="top: 0.2042em;">ꢆ </sub><sup style="top: -0.7813em;">ꢘꢕꢔ~ꢕꢔꢔꢟ </sup>ꢛꢑꢞ<sub style="top: 0.2042em;">ꢆ </sub>+ ꢆꢜ<sub style="top: 0.2042em;">ꢆ </sub>↑ </p><p>• <strong>PS (phosphosilicate glass): doped glass </strong></p><p>– <strong>(</strong>~ ꢕꢠ ꢀ<sub style="top: 0.17em;">ꢆ</sub>ꢞ<sub style="top: 0.17em;">ꢕ </sub><strong>+ </strong>ꢡꢕꢠ ꢛꢑꢞ<sub style="top: 0.17em;">ꢆ</sub><strong>) </strong>– <strong>The film “reflows” at 900</strong>ꢟ </p><p>ꢝꢀꢜ<sub style="top: 0.2042em;">ꢘ </sub>+ ꢕꢞ<sub style="top: 0.2042em;">ꢆ </sub><sup style="top: -0.7813em;">ꢘꢕꢔ~ꢕꢔꢔꢟ </sup>ꢆꢀ<sub style="top: 0.2042em;">ꢆ</sub>ꢞ<sub style="top: 0.2042em;">ꢕ </sub>+ ꢓꢜ<sub style="top: 0.2042em;">ꢆ </sub>↑ <br>ꢛꢑꢜ<sub style="top: 0.2042em;">ꢝ </sub>+ ꢞ<sub style="top: 0.2042em;">ꢆ </sub><sup style="top: -0.7813em;">ꢘꢕꢔ~ꢕꢔꢔꢟ </sup>ꢛꢑꢞ<sub style="top: 0.2042em;">ꢆ </sub>+ ꢆꢜ<sub style="top: 0.2042em;">ꢆ </sub>↑ </p><p>24 </p><p>12 </p><p><strong>LPCVD Examples </strong></p><p>• <strong>TEOS (Tetraethylorthosilicate) Si(OC</strong><sub style="top: 0.1667em;"><strong>2</strong></sub><strong>H</strong><sub style="top: 0.1667em;"><strong>5</strong></sub><strong>)</strong><sub style="top: 0.1667em;"><strong>4 </strong></sub></p><p>ꢛꢑ(ꢞꢢ<sub style="top: 0.2042em;">ꢆ</sub>ꢜ<sub style="top: 0.2042em;">ꢕ</sub>)<sub style="top: 0.2042em;">ꢝ</sub>→ ꢛꢑꢞ<sub style="top: 0.2042em;">ꢆ </sub>+ ꢢ<sub style="top: 0.2042em;">ꢣ</sub>ꢜ<sub style="top: 0.2042em;">ꢤ</sub>ꢞ<sub style="top: 0.2042em;">ꢥ </sub>↑ </p><p>– <strong>The liquid chemical TEOS is a safer alternative to gases silane or dichlorosilane </strong></p><p><strong>Molecular structure of TEOS </strong></p><p>25 </p><p><strong>LPCVD Examples </strong></p><p>• <strong>Si</strong><sub style="top: 0.1667em;"><strong>3</strong></sub><strong>N</strong><sub style="top: 0.1667em;"><strong>4 </strong></sub></p><p>ꢘꢛꢑꢜ<sub style="top: 0.2042em;">ꢝ </sub>+ ꢝꢇꢜ<sub style="top: 0.2042em;">ꢘ </sub>→ ꢛꢑ<sub style="top: 0.2042em;">ꢘ</sub>ꢇ<sub style="top: 0.2042em;">ꢝ </sub>+ ꢅꢆꢜ<sub style="top: 0.2042em;">ꢆ </sub>↑ </p><p>• <strong>Polysilicon </strong></p><p>Vꢦꢦ°Y </p><p></p><ul style="display: flex;"><li style="flex:1">ꢛꢑꢜ<sub style="top: 0.2042em;">ꢝ </sub></li><li style="flex:1">ꢛꢑ + ꢆꢜ<sub style="top: 0.2042em;">ꢆ </sub>↑ </li></ul><p></p><p>• <strong>Tungsten </strong></p><p>ꢧꢨ<sub style="top: 0.2042em;">ꢓ </sub>+ ꢘꢜ<sub style="top: 0.2042em;">ꢆ </sub>→ ꢧ + ꢓꢜꢨ ↑ </p><p>26 </p><p>13 </p><p><strong>CVD Mechanisms </strong></p><p><strong>reactant </strong></p><ul style="display: flex;"><li style="flex:1"><strong>5</strong></li><li style="flex:1"><strong>stagnant </strong></li></ul><p><strong>gas layer </strong><br><strong>12surface diffusion </strong><br><strong>4</strong></p><p><strong>Substrate </strong></p><p><strong>1 = Diffusion of reactant to surface 2 = Absorption of reactant to surface 3 = Chemical reaction 4 = Desorption of gas by-products 5 = Out-diffusion of by-product gas </strong></p><p>27 </p><p><strong>CVD Deposition Rate [ rove Model] </strong></p><p><strong>film </strong></p><p>ꢩ<br>= ꢬ<sub style="top: 0.2042em;">ꢪ </sub><br>ꢫ</p><p><strong>Si </strong></p><p>ꢮꢯ ꢉꢊ </p><p>ꢉ<sub style="top: 0.2042em;">ꢛ </sub>= ꢉ<sub style="top: 0.2042em;">ꢔ</sub>ꢭ<sup style="top: -0.4954em;">b </sup></p><p><strong>F</strong><sub style="top: 0.1667em;"><strong>1 </strong></sub></p><p><strong>F</strong></p><p><strong>d</strong></p><p><strong>= thickness of stagnant layer </strong></p><p><strong>d</strong></p><p>ꢢ<sub style="top: 0.2042em;">ꢪ </sub>− ꢢ<sub style="top: 0.2042em;">ꢛ </sub><br>ꢨ<sub style="top: 0.2042em;">ꢅ </sub>= ꢩ <br>ꢫ</p><p>ꢨ<sub style="top: 0.2042em;">ꢘ </sub>= ꢉ<sub style="top: 0.2042em;">ꢛ</sub>ꢢ<sub style="top: 0.2042em;">ꢛ </sub></p><p><strong>At steady state, </strong>ꢨ<sub style="top: 0.2042em;">ꢅ </sub>= ꢨ<sub style="top: 0.2042em;">ꢘ </sub></p><p>28 </p><p>14 </p><p><strong>rove model of CVD (cont’d) </strong></p><p>ꢢ<sub style="top: 0.17em;">ꢪ </sub>− ꢢ<sub style="top: 0.17em;">ꢛ </sub></p><ul style="display: flex;"><li style="flex:1">ꢨ<sub style="top: 0.17em;">ꢅ </sub>= ꢩ </li><li style="flex:1">= ꢬ<sub style="top: 0.17em;">ꢪ </sub>ꢢ<sub style="top: 0.17em;">ꢪ </sub>− ꢢ<sub style="top: 0.17em;">ꢛ </sub>= ꢉ<sub style="top: 0.17em;">ꢛ</sub>ꢢ<sub style="top: 0.17em;">ꢛ </sub>= ꢨ<sub style="top: 0.17em;">ꢘ </sub></li></ul><p></p><p>ꢬ<sub style="top: 0.17em;">ꢪ </sub></p><p>ꢫ<br>ꢢ<sub style="top: 0.17em;">ꢛ </sub>= </p><p>ꢢ<sub style="top: 0.17em;">ꢪ </sub></p><p>ꢉ<sub style="top: 0.17em;">ꢛ </sub>+ ꢬ<sub style="top: 0.17em;">ꢪ </sub></p><p>ꢉ<sub style="top: 0.17em;">ꢛ</sub>ꢬ<sub style="top: 0.17em;">ꢪ </sub></p><p>ꢅ<br>ꢨ<sub style="top: 0.17em;">ꢘ </sub>= </p><p>ꢢ<sub style="top: 0.17em;">ꢪ </sub></p><p>=</p><p>ꢢ<sub style="top: 0.17em;">ꢪ </sub></p><p></p><ul style="display: flex;"><li style="flex:1">ꢅ</li><li style="flex:1">ꢅ</li></ul><p>ꢉ<sub style="top: 0.17em;">ꢛ </sub>+ ꢬ<sub style="top: 0.17em;">ꢪ </sub></p><p>+</p><p>ꢬ<sub style="top: 0.17em;">ꢪ </sub>ꢉ<sub style="top: 0.17em;">ꢛ </sub></p><p><strong>Film growth rate is constant with time: </strong></p><p>ꢐꢰ ꢐꢁ </p><p>ꢨ<sub style="top: 0.17em;">ꢘ </sub></p><p>ꢇ<br>=</p><p><strong>where </strong>ꢇ <strong>= atomic density of deposited film </strong></p><p><strong>Note: This result is exactly the same as the Deal- rove model for thermal oxidation with oxide thickness = 0 </strong></p><p>29 </p><p><strong>Deposition Rate vs. Temperature </strong></p><p>ꢘꢆ</p><p><strong>gas transport </strong></p><p>ꢱ ∝ ꢊ </p><p><strong>limited surface-reaction limited </strong></p><p><strong>1 / T </strong></p><p><strong>0</strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>high T </strong></li><li style="flex:1"><strong>low T </strong></li></ul><p></p><p>30 </p><p>15 </p><p><strong>rowth Rate Dependence on Flow </strong><br><strong>Velocity </strong></p><p>31 </p><p><strong>CVD Features </strong></p><p><strong>1. More conformal deposition if T is uniform </strong></p><p><strong>Wafer topography </strong></p><p><strong>2. Inter-wafer and intra-wafer thickness uniformity less sensitive to gas flow patterns. (i.e. wafer placement). </strong></p><p>32 </p><p>16 </p><p><strong>Comments about CVD </strong></p><p><strong>(1) Sensitivity to gas flow pattern </strong><br><strong>Furnace tube </strong></p><p><strong>in </strong></p><p><strong>wafers </strong><br><strong>(2) Mass depletion problem </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>more </strong></li><li style="flex:1"><strong>less </strong></li></ul><p></p><p><strong>in out </strong></p><p>33 </p><p><strong>Plasma Enhanced CVD (PECVD) </strong></p><p>• <strong>Ionized chemical species allows a lower process temperature to be used </strong></p><p>– <strong>Plasma helps dissociate the precursor molecules at lower temperatures). </strong></p><p>• <strong>Film properties (e.g. mechanical stress) can be tailored by controlling ion bombardment with substrate bias voltage. </strong></p><p>34 </p><p>17 </p><p><strong>Atomic Layer Deposition (ALD) </strong></p><p>• <strong>The process involves two self-limiting half reactions that are repeated in cycles </strong></p><p>• <strong>Unlike CVD, in ALD pulses of precursors are introduced in each cycle </strong></p><p>• <strong>ALD is highly conformal and enables excellent thickness uniformity and control down to nm-scale </strong></p><p>35 </p><p><strong>ALD for High-k ate Dielectric </strong></p><p>36 </p><p>18 </p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages18 Page
-
File Size-