Lecture06-Thin Film Deposition

Lecture06-Thin Film Deposition

<p><strong>EE143 – Fall 2016 </strong><br><strong>Microfabrication Technologies </strong></p><p><strong>Lecture 6: Thin Film Deposition </strong><br><strong>Reading: Jaeger Chapter 6 </strong></p><p><strong>Prof. Ming C. Wu </strong><a href="mailto:[email protected]" target="_blank"><strong>[email protected] </strong></a><br><strong>511 Sutardja Dai Hall (SDH) </strong></p><p>1</p><p><strong>Vacuum Basics </strong></p><p>• <strong>Units </strong></p><p>– <strong>1 atmosphere = 760 torr = 1.013x10</strong><sup style="top: -0.25em;"><strong>5 </strong></sup><strong>Pa </strong>– <strong>1 bar =&nbsp;105 Pa = 750 torr </strong>– <strong>1 torr&nbsp;= 1 mm Hg </strong>– <strong>1 mtorr = 1 micron Hg </strong>– <strong>1 Pa = 7.5 mtorr = 1 newton/m2 </strong>– <strong>1 torr = 133.3 Pa </strong></p><p>• <strong>Ideal as&nbsp;Law: PV = NkT </strong></p><p>– <strong>k = 1.38E-23&nbsp;Joules/K </strong><br><strong>= 1.37E-22 atm cm</strong><sup style="top: -0.25em;"><strong>3</strong></sup><strong>/K </strong><br>– <strong>N = # of molecules (note the typo in your book) </strong>– <strong>T = absolute temperature in K </strong></p><p>2</p><p>1</p><p><strong>Dalton’s Law of Partial Pressure </strong></p><p>• <strong>For mixture of non-reactive gases in a common vessel, each gas exerts its pressure independent of others </strong></p><p>• ꢀ<sub style="top: 0.2042em;">ꢁꢂꢁꢃꢄ </sub>= ꢀ<sub style="top: 0.2042em;">ꢅ </sub>+ ꢀ<sub style="top: 0.2042em;">ꢆ </sub>+ ⋯ . +ꢀ<sub style="top: 0.2042em;">ꢇ </sub></p><p>– <strong>Total pressure = Sum of partial pressures </strong></p><p>• ꢇ<sub style="top: 0.2042em;">ꢁꢂꢁꢃꢄ </sub>= ꢇ<sub style="top: 0.2042em;">ꢅ </sub>+ ꢇ<sub style="top: 0.2042em;">ꢆ </sub>+ ⋯ . +ꢇ<sub style="top: 0.2042em;">ꢇ </sub></p><p>– <strong>Total number of molecules = sum of individual molecules </strong></p><p>• <strong>Ideal gas law observed by each gas, as well as all gases </strong></p><p>– ꢀ<sub style="top: 0.17em;">ꢅ</sub>ꢈ = ꢇ<sub style="top: 0.17em;">ꢅ</sub>ꢉꢊ – ꢀ<sub style="top: 0.17em;">ꢆ</sub>ꢈ = ꢇ<sub style="top: 0.17em;">ꢆ</sub>ꢉꢊ – ꢀ<sub style="top: 0.17em;">ꢇ</sub>ꢈ = ꢇ<sub style="top: 0.17em;">ꢇ</sub>ꢉꢊ </p><p>3</p><p><strong>Average Molecular Velocity </strong></p><p>• <strong>Assumes Maxwell- Boltzman Velocity Distribution </strong></p><p>ꢌꢉꢊ <br>3ꢋ = <br>ꢍꢎ </p><p>• <strong>where m = molecular weight of gas molecule </strong></p><p>4</p><p>2</p><p><strong>Mean Free Path between collisions </strong></p><p>ꢉꢊ <br>ꢏ = <br>ꢆꢍꢐ<sup style="top: -0.3002em;">ꢆ</sup>ꢀ </p><p>• <strong>where </strong></p><p>– <strong>K = Boltzmann constant </strong>– <strong>T = temperature in Kelvin </strong>– <strong>d = molecular diameter </strong>– <strong>P = pressure </strong></p><p>• <strong>For air at 300K </strong></p><p></p><ul style="display: flex;"><li style="flex:1">ꢓ. ꢓ </li><li style="flex:1">ꢔ. ꢔꢕ </li></ul><p></p><ul style="display: flex;"><li style="flex:1">ꢏ(ꢑꢒ ꢎꢎ) = </li><li style="flex:1">=</li></ul><p>ꢀ (ꢑꢒ ꢀꢃ)&nbsp;ꢀ (ꢑꢒ ꢁꢂꢖꢖ) </p><p>5</p><p><strong>Impingement Rate </strong></p><p>• ꢗ = <strong>number of molecules striking a surface per unit area per unit time&nbsp;1/cm</strong><sup style="top: -0.3333em;"><strong>2</strong></sup><strong>-sec] </strong></p><p>ꢀ<br>ꢗ = ꢘ. ꢕ×ꢅꢔ<sup style="top: -0.3663em;">ꢆꢆ </sup><br>ꢙꢊ </p><p>• <strong>where </strong></p><p>– <strong>P = pressure in torr </strong>– <strong>M = molecular weight </strong></p><p>6</p><p>3</p><p><strong>Question </strong></p><p>• <strong>How long does it take to form a monolayer of gas on the surface of a substrate? </strong></p><p>7</p><p><strong>Vacuum Basics (Cont.) </strong></p><p><strong>At 25</strong><sup style="top: -0.25em;"><strong>o</strong></sup><strong>C </strong></p><p><strong>P</strong></p><p><strong>I</strong></p><p><strong>M</strong></p><p><strong>1 µm/min </strong></p><p><strong>Plasma Processing </strong><br><strong>Residual Vacuum </strong><br><strong>CVD </strong></p><p><strong>Pressure (Torr) </strong></p><p>8</p><p>4</p><p><strong>Thin Film Deposition </strong></p><p><strong>Physical Methods </strong><br><strong>Chemical Methods </strong></p><p><strong>Evaporation Sputtering </strong><br><strong>Chemical Vapor Deposition (CVD) Atomic Layer Deposition (ALD) </strong></p><p><strong>Film substrate </strong></p><p>• <strong>Applications </strong></p><p>– <strong>Metalization (e.g., Al, TiN, W, Silicide) </strong>– <strong>Polysilicon </strong>– <strong>Dielectric layers (SiO</strong><sub style="top: 0.1667em;"><strong>2</strong></sub><strong>, Si</strong><sub style="top: 0.1667em;"><strong>3</strong></sub><strong>N</strong><sub style="top: 0.1667em;"><strong>4</strong></sub><strong>) </strong></p><p>9</p><p><strong>Evaporation </strong></p><p><strong>wafer wafer </strong></p><p><strong>Al vapor </strong><br><strong>Al </strong><br><strong>Al vapor </strong></p><p><strong>deposited </strong></p><p><strong>Al fill </strong></p><p><strong>deposited Al fill </strong></p><p><strong>ecrucible is water cooled heating hot boat (e.g. W) electron </strong></p><p><strong>source </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Thermal Evaporation </strong></li><li style="flex:1"><strong>Electron Beam Evaporation </strong></li></ul><p></p><p><strong>as Pressure:&nbsp;10</strong><sup style="top: -0.25em;"><strong>-5 </strong></sup><strong>Torr </strong></p><p>10 </p><p>5</p><p><strong>Evaporation: Filament &amp; Electron </strong><br><strong>Beam </strong></p><p><strong>(a) Filament&nbsp;evaporation with loops of wire hanging from a heated filament </strong></p><p><strong>(b) Electron&nbsp;beam is focused on metal charge by a magnetic field </strong></p><p>11 </p><p><strong>Sputtering </strong></p><p><strong>Negative Bias ( kV) </strong></p><p><strong>I</strong></p><p><strong>Al target </strong></p><p><strong>Ar</strong><sup style="top: -0.1667em;"><strong>+ </strong></sup><strong>Ar</strong><sup style="top: -0.1667em;"><strong>+ </strong></sup></p><p><strong>Al </strong><br><strong>Al </strong></p><p><strong>Ar plasma </strong></p><p><strong>Al </strong></p><p><strong>Deposited Al film </strong></p><p><strong>wafer </strong></p><p><strong>heat substrate to ~ 00</strong><sup style="top: -0.25em;"><strong>o</strong></sup><strong>C (optional) </strong></p><p>•</p><p><strong>as pressure&nbsp;1 to 10 mTorr </strong><br>• <strong>Deposition rate = constant </strong>× ꢚ × ꢛ </p><p>– <strong>Where </strong>ꢚ <strong>= ion current </strong></p><p>–</p><p>ꢛ <strong>= sputtering yield </strong></p><p>12 </p><p>6</p><p><strong>Plasma Basics </strong></p><p>13 </p><p><strong>Basic Properties of Plasma </strong></p><p>• <strong>The bulk of plasma contains equal concentrations of ions and electrons. </strong></p><p><strong>»</strong></p><p>• <strong>Electric potential is&nbsp;constant inside bulk of plasma. The voltage drop is mostly across the sheath regions </strong></p><p>• <strong>Plasma used in IC&nbsp;processing is&nbsp;a “weak” plasma, containing mostly neutral atoms/molecules. </strong></p><p>– <strong>Degree of ionization is </strong></p><p><strong>»</strong></p><p><strong>10</strong><sup style="top: -0.25em;"><strong>-3 </strong></sup><strong>to 10</strong><sup style="top: -0.25em;"><strong>-6 </strong></sup></p><p>14 </p><p>7</p><p><strong>Outcomes of Plasma bombardment </strong></p><p>15 </p><p><strong>Sputtering Yield </strong></p><p><em>Al </em><br><em>Ar </em></p><p><em>Al </em></p><p><em>Al </em></p><p>Sputtering ieel S </p><p><em># f &nbsp; jej e cj e c rgjc &nbsp; c om </em></p><p><em>S </em>º </p><p><em>in e oing i &nbsp; n n </em></p><p></p><ul style="display: flex;"><li style="flex:1">0.1 </li><li style="flex:1">S</li><li style="flex:1">0</li></ul><p></p><p>16 </p><p>8</p><p><strong>Sputtering of Compound Targets </strong></p><p><strong>A</strong><sub style="top: 0.25em;"><strong>x</strong></sub><strong>B</strong><sub style="top: 0.25em;"><strong>y </strong></sub></p><p><strong>Ar</strong><sup style="top: -0.3333em;"><strong>+ </strong></sup></p><p><strong>A</strong><sub style="top: 0.25em;"><strong>flux </strong></sub><strong>B</strong><sub style="top: 0.25em;"><strong>flux </strong></sub></p><p><strong>Target </strong></p><p><strong>¹</strong></p><p><strong>Because S</strong><sub style="top: 0.1667em;"><strong>A </strong></sub><strong>S</strong><sub style="top: 0.1667em;"><strong>B</strong></sub><strong>, target surface will acquire a composition A</strong><sub style="top: 0.1667em;"><strong>x’</strong></sub><strong>B</strong><sub style="top: 0.1667em;"><strong>y’ </strong></sub><strong>at steady state. </strong></p><p>17 </p><p><strong>Reactive Sputtering </strong></p><p><strong>Sputtering deposition </strong></p><p><strong>Ti Target </strong></p><p><strong>while introducing a reactive gas into the plasma. </strong></p><p><strong>N</strong><sub style="top: 0.25em;"><strong>2 </strong></sub><strong>plasma </strong></p><p><strong>Example: </strong>• <strong>Formation of TiN </strong></p><p><strong>+</strong></p><p>– <strong>Sputter a Ti target with a nitrogen plasma </strong></p><p><strong>Ti, N</strong><sub style="top: 0.25em;"><strong>2 </strong></sub><br><strong>TiN </strong></p><p><strong>Substrate </strong></p><p>18 </p><p>9</p><p><strong>Step Coverage Problem with PVD </strong></p><p>• <strong>Both evaporation and sputtering have directional fluxes </strong></p><p><strong>“geometrical shadowing” </strong></p><p><strong>Flux film </strong></p><p><strong>step film </strong></p><p><strong>wafer </strong></p><p>19 </p><p><strong>Step Coverage concerns in contacts </strong></p><p>20 </p><p>10 </p><p><strong>Methods to Minimize Step Coverage </strong><br><strong>Problems </strong></p><p>• <strong>Rotate + Tilt substrate during deposition </strong>• <strong>Elevate substrate temperature (why?) </strong>• <strong>Use large-area deposition source </strong></p><p><strong>Sputtering Target </strong></p><p>21 </p><p><strong>Advantages of Sputtering over </strong><br><strong>Evaporation </strong></p><p>• <strong>For multi-component thin films, sputtering gives better composition control using compound targets. </strong></p><p>– <strong>Evaporation depends on vapor pressure of various vapor components and is difficult to control. </strong></p><p>• <strong>Better lateral thickness uniformity </strong></p><p>– <strong>Superposition of multiple point sources </strong></p><p>Sputtering Target Superposition of all small-area sources </p><p>Profile due to one small-area source </p><p>22 </p><p>11 </p><p><strong>Chemical Vapor Deposition (CVD) </strong></p><p><strong>source chemical reaction film substrate </strong></p><p><strong>More conformal deposition than PVD </strong></p><p><strong>t</strong></p><p><strong>Shown here is 100% </strong></p><p><strong>t</strong></p><p><strong>conformal deposition </strong></p><p><strong>step </strong></p><p>23 </p><p><strong>LPCVD Examples </strong></p><p>• <strong>SiO</strong><sub style="top: 0.1667em;"><strong>2 </strong></sub></p><p>ꢛꢑꢜ<sub style="top: 0.2042em;">ꢝ </sub>+ ꢞ<sub style="top: 0.2042em;">ꢆ </sub><sup style="top: -0.7813em;">ꢘꢕꢔ~ꢕꢔꢔꢟ </sup>ꢛꢑꢞ<sub style="top: 0.2042em;">ꢆ </sub>+ ꢆꢜ<sub style="top: 0.2042em;">ꢆ </sub>↑ </p><p>• <strong>PS (phosphosilicate&nbsp;glass): doped glass </strong></p><p>– <strong>(</strong>~ ꢕꢠ&nbsp;ꢀ<sub style="top: 0.17em;">ꢆ</sub>ꢞ<sub style="top: 0.17em;">ꢕ </sub><strong>+ </strong>ꢡꢕꢠ ꢛꢑꢞ<sub style="top: 0.17em;">ꢆ</sub><strong>) </strong>– <strong>The film “reflows” at 900</strong>ꢟ </p><p>ꢝꢀꢜ<sub style="top: 0.2042em;">ꢘ </sub>+ ꢕꢞ<sub style="top: 0.2042em;">ꢆ </sub><sup style="top: -0.7813em;">ꢘꢕꢔ~ꢕꢔꢔꢟ </sup>ꢆꢀ<sub style="top: 0.2042em;">ꢆ</sub>ꢞ<sub style="top: 0.2042em;">ꢕ </sub>+ ꢓꢜ<sub style="top: 0.2042em;">ꢆ </sub>↑ <br>ꢛꢑꢜ<sub style="top: 0.2042em;">ꢝ </sub>+ ꢞ<sub style="top: 0.2042em;">ꢆ </sub><sup style="top: -0.7813em;">ꢘꢕꢔ~ꢕꢔꢔꢟ </sup>ꢛꢑꢞ<sub style="top: 0.2042em;">ꢆ </sub>+ ꢆꢜ<sub style="top: 0.2042em;">ꢆ </sub>↑ </p><p>24 </p><p>12 </p><p><strong>LPCVD Examples </strong></p><p>• <strong>TEOS (Tetraethylorthosilicate) Si(OC</strong><sub style="top: 0.1667em;"><strong>2</strong></sub><strong>H</strong><sub style="top: 0.1667em;"><strong>5</strong></sub><strong>)</strong><sub style="top: 0.1667em;"><strong>4 </strong></sub></p><p>ꢛꢑ(ꢞꢢ<sub style="top: 0.2042em;">ꢆ</sub>ꢜ<sub style="top: 0.2042em;">ꢕ</sub>)<sub style="top: 0.2042em;">ꢝ</sub>→ ꢛꢑꢞ<sub style="top: 0.2042em;">ꢆ </sub>+ ꢢ<sub style="top: 0.2042em;">ꢣ</sub>ꢜ<sub style="top: 0.2042em;">ꢤ</sub>ꢞ<sub style="top: 0.2042em;">ꢥ </sub>↑ </p><p>– <strong>The liquid chemical TEOS is a safer alternative to gases silane or dichlorosilane </strong></p><p><strong>Molecular structure of TEOS </strong></p><p>25 </p><p><strong>LPCVD Examples </strong></p><p>• <strong>Si</strong><sub style="top: 0.1667em;"><strong>3</strong></sub><strong>N</strong><sub style="top: 0.1667em;"><strong>4 </strong></sub></p><p>ꢘꢛꢑꢜ<sub style="top: 0.2042em;">ꢝ </sub>+ ꢝꢇꢜ<sub style="top: 0.2042em;">ꢘ </sub>→ ꢛꢑ<sub style="top: 0.2042em;">ꢘ</sub>ꢇ<sub style="top: 0.2042em;">ꢝ </sub>+ ꢅꢆꢜ<sub style="top: 0.2042em;">ꢆ </sub>↑ </p><p>• <strong>Polysilicon </strong></p><p>Vꢦꢦ°Y </p><p></p><ul style="display: flex;"><li style="flex:1">ꢛꢑꢜ<sub style="top: 0.2042em;">ꢝ </sub></li><li style="flex:1">ꢛꢑ + ꢆꢜ<sub style="top: 0.2042em;">ꢆ </sub>↑ </li></ul><p></p><p>• <strong>Tungsten </strong></p><p>ꢧꢨ<sub style="top: 0.2042em;">ꢓ </sub>+ ꢘꢜ<sub style="top: 0.2042em;">ꢆ </sub>→ ꢧ + ꢓꢜꢨ ↑ </p><p>26 </p><p>13 </p><p><strong>CVD Mechanisms </strong></p><p><strong>reactant </strong></p><ul style="display: flex;"><li style="flex:1"><strong>5</strong></li><li style="flex:1"><strong>stagnant </strong></li></ul><p><strong>gas layer </strong><br><strong>12surface diffusion </strong><br><strong>4</strong></p><p><strong>Substrate </strong></p><p><strong>1 = Diffusion of reactant to surface 2 = Absorption of reactant to surface 3 = Chemical reaction 4 = Desorption of gas by-products 5 = Out-diffusion of by-product gas </strong></p><p>27 </p><p><strong>CVD Deposition Rate [&nbsp;rove Model] </strong></p><p><strong>film </strong></p><p>ꢩ<br>= ꢬ<sub style="top: 0.2042em;">ꢪ </sub><br>ꢫ</p><p><strong>Si </strong></p><p>ꢮꢯ ꢉꢊ </p><p>ꢉ<sub style="top: 0.2042em;">ꢛ </sub>= ꢉ<sub style="top: 0.2042em;">ꢔ</sub>ꢭ<sup style="top: -0.4954em;">b </sup></p><p><strong>F</strong><sub style="top: 0.1667em;"><strong>1 </strong></sub></p><p><strong>F</strong></p><p><strong>d</strong></p><p><strong>= thickness of stagnant layer </strong></p><p><strong>d</strong></p><p>ꢢ<sub style="top: 0.2042em;">ꢪ </sub>− ꢢ<sub style="top: 0.2042em;">ꢛ </sub><br>ꢨ<sub style="top: 0.2042em;">ꢅ </sub>= ꢩ <br>ꢫ</p><p>ꢨ<sub style="top: 0.2042em;">ꢘ </sub>= ꢉ<sub style="top: 0.2042em;">ꢛ</sub>ꢢ<sub style="top: 0.2042em;">ꢛ </sub></p><p><strong>At steady state, </strong>ꢨ<sub style="top: 0.2042em;">ꢅ </sub>= ꢨ<sub style="top: 0.2042em;">ꢘ </sub></p><p>28 </p><p>14 </p><p><strong>rove model of CVD (cont’d) </strong></p><p>ꢢ<sub style="top: 0.17em;">ꢪ </sub>− ꢢ<sub style="top: 0.17em;">ꢛ </sub></p><ul style="display: flex;"><li style="flex:1">ꢨ<sub style="top: 0.17em;">ꢅ </sub>= ꢩ </li><li style="flex:1">= ꢬ<sub style="top: 0.17em;">ꢪ </sub>ꢢ<sub style="top: 0.17em;">ꢪ </sub>− ꢢ<sub style="top: 0.17em;">ꢛ </sub>= ꢉ<sub style="top: 0.17em;">ꢛ</sub>ꢢ<sub style="top: 0.17em;">ꢛ </sub>= ꢨ<sub style="top: 0.17em;">ꢘ </sub></li></ul><p></p><p>ꢬ<sub style="top: 0.17em;">ꢪ </sub></p><p>ꢫ<br>ꢢ<sub style="top: 0.17em;">ꢛ </sub>= </p><p>ꢢ<sub style="top: 0.17em;">ꢪ </sub></p><p>ꢉ<sub style="top: 0.17em;">ꢛ </sub>+ ꢬ<sub style="top: 0.17em;">ꢪ </sub></p><p>ꢉ<sub style="top: 0.17em;">ꢛ</sub>ꢬ<sub style="top: 0.17em;">ꢪ </sub></p><p>ꢅ<br>ꢨ<sub style="top: 0.17em;">ꢘ </sub>= </p><p>ꢢ<sub style="top: 0.17em;">ꢪ </sub></p><p>=</p><p>ꢢ<sub style="top: 0.17em;">ꢪ </sub></p><p></p><ul style="display: flex;"><li style="flex:1">ꢅ</li><li style="flex:1">ꢅ</li></ul><p>ꢉ<sub style="top: 0.17em;">ꢛ </sub>+ ꢬ<sub style="top: 0.17em;">ꢪ </sub></p><p>+</p><p>ꢬ<sub style="top: 0.17em;">ꢪ </sub>ꢉ<sub style="top: 0.17em;">ꢛ </sub></p><p><strong>Film growth rate is constant with time: </strong></p><p>ꢐꢰ ꢐꢁ </p><p>ꢨ<sub style="top: 0.17em;">ꢘ </sub></p><p>ꢇ<br>=</p><p><strong>where </strong>ꢇ <strong>= atomic density of deposited film </strong></p><p><strong>Note: This result is exactly the same as the Deal-&nbsp;rove model for thermal oxidation with oxide thickness = 0 </strong></p><p>29 </p><p><strong>Deposition Rate vs. Temperature </strong></p><p>ꢘꢆ</p><p><strong>gas transport </strong></p><p>ꢱ ∝&nbsp;ꢊ </p><p><strong>limited surface-reaction limited </strong></p><p><strong>1 / T </strong></p><p><strong>0</strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>high T </strong></li><li style="flex:1"><strong>low T </strong></li></ul><p></p><p>30 </p><p>15 </p><p><strong>rowth Rate Dependence on Flow </strong><br><strong>Velocity </strong></p><p>31 </p><p><strong>CVD Features </strong></p><p><strong>1. More&nbsp;conformal deposition if T is uniform </strong></p><p><strong>Wafer topography </strong></p><p><strong>2. Inter-wafer&nbsp;and intra-wafer thickness uniformity less sensitive to gas flow&nbsp;patterns. (i.e. wafer placement). </strong></p><p>32 </p><p>16 </p><p><strong>Comments about CVD </strong></p><p><strong>(1) Sensitivity&nbsp;to gas flow pattern </strong><br><strong>Furnace tube </strong></p><p><strong>in </strong></p><p><strong>wafers </strong><br><strong>(2) Mass depletion problem </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>more </strong></li><li style="flex:1"><strong>less </strong></li></ul><p></p><p><strong>in out </strong></p><p>33 </p><p><strong>Plasma Enhanced CVD (PECVD) </strong></p><p>• <strong>Ionized chemical&nbsp;species allows&nbsp;a lower process temperature to be used </strong></p><p>– <strong>Plasma helps dissociate the precursor molecules at lower temperatures). </strong></p><p>• <strong>Film properties (e.g. mechanical stress) can be tailored by controlling ion bombardment with substrate bias voltage. </strong></p><p>34 </p><p>17 </p><p><strong>Atomic Layer Deposition (ALD) </strong></p><p>• <strong>The process involves two self-limiting half reactions that are repeated in cycles </strong></p><p>• <strong>Unlike CVD, in ALD pulses of precursors are introduced in each cycle </strong></p><p>• <strong>ALD is highly conformal and enables excellent thickness uniformity and control down to nm-scale </strong></p><p>35 </p><p><strong>ALD for High-k&nbsp;ate Dielectric </strong></p><p>36 </p><p>18 </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    18 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us