Canonical Heights on Varieties with Morphisms Compositio Mathematica, Tome 89, No 2 (1993), P

Canonical Heights on Varieties with Morphisms Compositio Mathematica, Tome 89, No 2 (1993), P

<p>COMPOSITIO MATHEMATICA </p><p>GREGORY S. CALL JOSEPH H. SILVERMAN </p><p>Canonical heights on varieties with morphisms </p><p>Compositio Mathematica, tome&nbsp;89, n<sup style="top: -0.2793em;">o </sup>2 (1993), p. 163-205 </p><p>&lt;<a href="/goto?url=http://www.numdam.org/item?id=CM_1993__89_2_163_0" target="_blank">http://www.numdam.org/item?id=CM_1993__89_2_163_0</a>&gt; </p><p>© Foundation Compositio Mathematica, 1993, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (<a href="/goto?url=http://http://www.compositio.nl/" target="_blank">http: </a><a href="/goto?url=http://http://www.compositio.nl/" target="_blank">//http://www.compositio.nl/</a>) implique l’accord avec les conditions gé- nérales d’utilisation (<a href="/goto?url=http://www.numdam.org/conditions" target="_blank">http://www.numdam.org/conditions</a>). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. </p><p>Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques </p><p><a href="/goto?url=http://www.numdam.org/" target="_blank">http://www.numdam.org/ </a></p><p>1993. </p><p>Mathematica 89: 163 </p><p>163-205, </p><p>Compositio </p><p>©</p><p>1993 Kluwer </p><p>Publishers. Printed in </p><p>the Netherlands. </p><p>Academic </p><p>Canonical </p><p>on <sup style="top: 0.01em;">varieties </sup>with </p><p>heights </p><p>morphisms </p><p>GREGORY </p><p>Mathematics </p><p>S. CALL* </p><p>Amherst </p><p>Amherst, </p><p>College, </p><p>MA </p><p>USA </p><p>01002, </p><p>Department, </p><p>and </p><p>JOSEPHH. SILVERMAN** </p><p>Mathematics </p><p>Brown </p><p>RI </p><p>Providence, </p><p>USA </p><p>02912, </p><p>Department, </p><p>University, </p><p>Received 13 </p><p>in final form 16 October 1992 </p><p>1992; </p><p>May </p><p>accepted </p><p>Let </p><p>A</p><p>an </p><p>be </p><p>abelian </p><p>defined over </p><p>a</p><p>field </p><p>K</p><p>D</p><p>number </p><p>have </p><p>and let </p><p>be </p><p>a</p><p>a</p><p>a</p><p>variety </p><p><sup style="top: -0.01em;">divisor </sup>on A. Néron and Tate </p><p>the existence of </p><p>symmetric </p><p>canonical </p><p>proven </p><p>on </p><p>characterized </p><p>and satisfies </p><p>the </p><p>that </p><p>is </p><p>height hA,D </p><p>A(k) </p><p>by </p><p>properties </p><p>hA,D </p><p>Weil </p><p>for the divisor </p><p>D</p><p>for all </p><p>height </p><p>A,D([m]P) </p><p>m2hA,D(P) </p><p>Silverman </p><p>that on certain K3 </p><p>surfaces </p><p>S</p><p>P ~ A(K). Similarly, </p><p>[19] proved </p><p>with </p><p>a</p><p>non-trivial </p><p>S ~ </p><p>S</p><p>there are two canonical </p><p>~: </p><p>automorphism </p><p>height </p><p>for </p><p>functions </p><p>characterized </p><p>the </p><p>that </p><p>are </p><p>Weil </p><p>hs </p><p>by </p><p>properties </p><p>they </p><p>heights </p><p>+</p><p>certain divisors </p><p>E</p><p>and <sub style="top: 0.19em;">satisfy S(~P) = (7 </sub></p><p>for all </p><p>P</p><p>E</p><p>43) 1 S(P) </p><p>S(K) . </p><p>In </p><p>we will </p><p>this </p><p>these </p><p>to </p><p>a</p><p>construct </p><p>canonical </p><p>paper </p><p>on an </p><p>generalize </p><p>examples </p><p>a</p><p>V</p><p>V - </p><p>V</p><p>and </p><p>a</p><p>height </p><p>divisor </p><p>arbitrary variety </p><p>~: </p><p>morphism </p><p>eigenvalue </p><p>strictly greater </p><p>possessing </p><p>which is an </p><p>with </p><p>class q </p><p>for 0 </p><p>eigenclass </p><p>than 1. Wewill also </p><p>a</p><p>numberof results about these </p><p>canonical </p><p>prove </p><p>which should be useful for </p><p>heights </p><p>compu- </p><p>arithmetic </p><p>and </p><p>numerical </p><p>applications </p><p>tations. We<sup style="top: 0.01em;">now </sup>describe the contents of this </p><p>in </p><p>more detail. </p><p>paper </p><p>Let </p><p>V</p><p>be </p><p>adefined over </p><p>a</p><p>number field </p><p>let </p><p>a</p><p>V ~ </p><p>V</p><p></p><ul style="display: flex;"><li style="flex:1">be </li><li style="flex:1">K, </li></ul><p></p><p>variety </p><p>~: </p><p>and </p><p>that there is </p><p>a</p><p>divisor <sub style="top: 0.16em;">class q </sub>E </p><p>main result </p><p>~ R such </p><p>morphism, </p><p>suppose </p><p>Div(V) </p><p>that </p><p>0*,q </p><p>some 03B1 &amp;#x3E; 1. </p><p>Our </p><p>first </p><p>aq<sup style="top: -0.16em;">for </sup></p><p>that </p><p>says </p><p>(Theorem 1.1) </p><p>there is </p><p>a</p><p>canonical </p><p>function </p><p>height </p><p>characterized </p><p>the two </p><p>that </p><p>is </p><p>a</p><p>Weil </p><p>function for </p><p>by </p><p>properties </p><p>V,~,~ </p><p>height </p><p>the divisor class </p><p>and </p><p>~</p><p>*</p><p>Research </p><p><sub style="top: 0.14em;">by</sub>NSFROA-DMS-8913113andan </p><p>supported by </p><p>Amherst </p><p>Trustee </p><p>supported </p><p>Faculty </p><p>Fellowship. </p><p>** </p><p>Research </p><p>and </p><p>NSFDMS-8913113 </p><p>a</p><p>Sloan </p><p>Foundation </p><p>Fellowship. </p><p>164 </p><p>of the </p><p>that </p><p>is </p><p>canonical </p><p>we show </p><p>then </p><p>As an </p><p>if 17 </p><p>height, </p><p>points </p><p>ample, </p><p>application </p><p>contains </p><p>which <sup style="top: 0.01em;">are </sup></p><p>only </p><p>finitely many </p><p>[13] </p><p>0-periodic, generalizing </p><p>V(K) </p><p>Narkiewicz </p><p>and Lewis </p><p>results of </p><p>[10]. </p><p>has shown howto </p><p>intoasumoflocal </p><p>the canonical </p><p>on </p><p>Néron </p><p>[8]) </p><p>height </p><p>(see </p><p>decomp<sub style="top: 1.07em;">A</sub>o<sub style="top: 1.07em;">,</sub>s<sub style="top: 1.07em;">D</sub>e<sub style="top: 1.07em;">(P) = 03A3 </sub></p><p>hl,D </p><p>anabelian </p><p><sub style="top: 0.16em;">v), </sub>where </p><p>variety </p><p>nVÂA,D(P, </p><p>heights, </p><p><sup style="top: 0.01em;">is </sup>over the distinct </p><p>of </p><p><sup style="top: 0.01em;">the </sup>sum </p><p>canonical </p><p>sum </p><p>We likewise show that the </p><p>places v </p><p>K(P). </p><p>constructed </p><p>in Theorem 1.1 can be </p><p>as </p><p>a</p><p>height </p><p>decomposed </p><p>V,~,~ </p><p>Here </p><p>E</p><p>is </p><p>divisor </p><p></p><ul style="display: flex;"><li style="flex:1">in </li><li style="flex:1">class </li></ul><p></p><p>the divisor </p><p>and </p><p>q, </p><p>any </p><p>E</p><p>with the additional </p><p>is </p><p>a</p><p>Weil local </p><p>if f is any </p><p>function for </p><p>the divisor </p><p>height </p><p>property </p><p>constant </p><p>+</p><p>aE </p><p>then there is </p><p>a</p><p>that </p><p>function </p><p>~*E </p><p>satisfying </p><p>div( f ), </p><p>a</p><p>so that </p><p>in Theorem </p><p>proven </p><p>The existence of the canonical local </p><p>and the fact that the canonical </p><p>is </p><p>2.1, </p><p>is </p><p>height </p><p>V,~,~ </p><p>is the sumof the local </p><p>height </p><p>heights </p><p>V,~,~ </p><p>in Theorem 2.3. </p><p>two Weil </p><p>given </p><p>for </p><p>a</p><p>divisor differ </p><p>a</p><p>bounded </p><p>and </p><p>so </p><p>amount, </p><p>Any </p><p>heights </p><p>given </p><p>by </p><p>in </p><p>the difference of the canonical </p><p>Weil </p><p>particular </p><p>height </p><p>any given </p><p>V,~,~ </p><p>is </p><p>a</p><p>on </p><p>and </p><p>For </p><p>bounded </p><p>constant </p><p>V, q, </p><p>0</p><p>height </p><p>by </p><p>important </p><p>hV,~ </p><p>depending </p><p>hV,~. </p><p>it is </p><p>to have an </p><p>bound for this constant. </p><p>manyapplications </p><p>explicit </p><p>Such aboundwas </p><p>and Zimmer </p><p>for Weierstrass </p><p>given byDem’janenko [4] </p><p>curves, </p><p>[25] </p><p>families of </p><p>elliptic </p><p>for Mumford families </p><p>Manin and Zarhin </p><p>by </p><p>[12] </p><p>of abelian </p><p>and </p><p>Silverman and Tate </p><p>for </p><p>families </p><p>of </p><p>varieties, </p><p>by </p><p>[15] </p><p>arbitrary </p><p>abelian varieties. </p><p>V - T </p><p>Wefollowthe </p><p>in </p><p>andconsider </p><p>a</p><p>approach </p><p>[15] </p><p>family </p><p>of varieties </p><p>with </p><p>a</p><p>V ~ V <sup style="top: 0.01em;">over </sup></p><p>T</p><p>and </p><p>a</p><p>divisor </p><p>0: </p><p>class 7y </p><p>satisfying </p><p>map </p><p>Then on </p><p>almost all </p><p>there is </p><p>a</p><p>canonical </p><p>~*~ = </p><p><sup style="top: -0.01em;">and</sup>we </p><p>03B1~. </p><p>fibers ’V, </p><p>height </p><p>Vt,~t~t, </p><p>can ask to </p><p>boundthe difference between this </p><p>a</p><p>Weil </p><p>and </p><p>height </p><p>given </p><p>in </p><p>terms </p><p>t. </p><p>In Theorem 3.1 we show that there </p><p>of the </p><p>height </p><p>hV,~ </p><p>parameter </p><p>are </p><p>constants </p><p>so that </p><p>ci, C2 </p><p>165 </p><p>a</p><p>similar </p><p>between </p><p>This </p><p>We </p><p>also </p><p>the difference </p><p>estimate for </p><p>3.2) </p><p>give (Theorem </p><p>the canonical local </p><p>and </p><p>a</p><p>Weil local </p><p>height AV,E . </p><p>height Vt,Et,~t </p><p>given </p><p>result </p><p>for abelian </p><p>varieties. </p><p>generalizes Lang’s </p><p>Suppose </p><p>Weil </p><p>[8] </p><p>a</p><p>now <sup style="top: -0.01em;">that </sup>the base </p><p>T</p><p>of the </p><p>a</p><p>V- T is </p><p>a</p><p>let </p><p>be </p><p>curve, </p><p>hT </p><p>family </p><p>T<sub style="top: 0.21em;">corresponding </sub></p><p>and let P: T ~ V </p><p>on </p><p>to </p><p>divisor of </p><p>1, </p><p>the </p><p>height </p><p>section. The </p><p>degree </p><p>over </p><p>be </p><p>a</p><p>fiber </p><p>V</p><p>of Yis </p><p>a</p><p>function </p><p>and </p><p>generic </p><p>variety </p><p>global </p><p>e</p><p>field </p><p>the section P<sub style="top: 0.22em;">corresponds </sub>to </p><p>a</p><p>rational </p><p>Pv </p><p>K(T), </p><p>V(K(T)), </p><p>point </p><p>Theorem 1.1 </p><p>the </p><p>a</p><p>canonical </p><p>which can be evaluated at </p><p>gives </p><p>height </p><p>Vt,~V,~V <br>There <sup style="top: -0.01em;">are </sup>then three </p><p>and </p><p>which </p><p>hT </p><p>we show in </p><p>Pv. </p><p>point </p><p>be </p><p>heights </p><p>V,~V,~V,Vt,~t,~V, </p><p>a</p><p>result of Silverman </p><p>may </p><p>compared. Generalizing </p><p>[15], </p><p>Theorem 4.1 that </p><p>Silverman’s </p><p>result has been </p><p>and </p><p>in various </p><p>original </p><p>[2], </p><p>generalized </p><p>Silverman </p><p>strengthened </p><p>[20] </p><p>Call </p><p>Green </p><p>and Tate </p><p>We </p><p>ways by </p><p>have not </p><p>[6], Lang [8, 9], </p><p>[22]. </p><p>been able to </p><p>of these </p><p>results <sup style="top: -0.01em;">in </sup>our </p><p>yet </p><p>prove any </p><p>stronger </p><p>general </p><p>situation. </p><p>In the fifth section we <sup style="top: 0.01em;">take </sup></p><p>thecanonical local </p><p>the </p><p>of how one </p><p>up </p><p>question </p><p>and </p><p>might efficiently </p><p>thecanoni- </p><p>compute </p><p>heights V,E,~, </p><p>therebyeventually </p><p>cal </p><p>In the case that </p><p>V</p><p><sup style="top: -0.01em;">is </sup>an </p><p>Tate </p><p>curve, </p><p>global height </p><p>(unpub- </p><p>that the </p><p>hV,E,CP’ </p><p>elliptic </p><p>a</p><p>series for </p><p>lished) gave </p><p>completion </p><p>rapidly convergent </p><p>v) </p><p>provided </p><p>V,(O),[2](P, </p><p>of </p><p>K</p><p>at v is not </p><p>and Silverman </p><p>Kv </p><p>closed, </p><p>algebraically </p><p>[18] </p><p>give </p><p>described </p><p>a</p><p>modification of Tate’s series which works for all <sup style="top: -0.01em;">v. </sup>We </p><p>series <sup style="top: 0.01em;">for </sup>our canonical local </p><p>the series of Tate </p><p>heights </p><p>generalizing </p><p>and </p><p>Â V,E,cp </p><p>and Silverman </p><p>how such </p><p>discuss </p><p>5.1) </p><p>(Theorem 5.3) </p><p>practice. </p><p>briefly </p><p>(Proposition </p><p>in </p><p>series could be </p><p>implemented </p><p>The final section is devoted to </p><p>aof </p><p>canonical local </p><p>for </p><p>description </p><p>heights </p><p>non-archimedean </p><p>in termsofintersection </p><p>In the case ofabelian </p><p>intersection </p><p>places </p><p>varieties it is knownthat the local </p><p>theory. </p><p>computed </p><p>general </p><p>every </p><p>extends </p><p>canbe </p><p>heights </p><p>using </p><p>on the Néron model. We show in </p><p>that </p><p>if </p><p>V</p><p>a</p><p>model V </p><p>has </p><p>theory </p><p>a</p><p>local </p><p>such that </p><p>Ov </p><p>over </p><p>rational </p><p>a</p><p>extends to </p><p>complete </p><p>ring </p><p>point </p><p>that the </p><p>V</p><p>section and such </p><p>V ~ </p><p>to </p><p>a</p><p>finite </p><p>0: </p><p></p><ul style="display: flex;"><li style="flex:1">morphism </li><li style="flex:1">morphism </li></ul><p></p><p>V ~ </p><p>then the canonical local </p><p>is </p><p>(D: </p><p>a</p><p>certain </p><p>intersection </p><p>V, </p><p>height </p><p>the </p><p>given by </p><p>question </p><p>V. Weleave for future </p><p>index on </p><p>exist. </p><p>To </p><p>of whether </p><p>such models </p><p>study </p><p>in this </p><p>we </p><p>a</p><p>of </p><p>and </p><p>local </p><p>summarize, </p><p>paper </p><p>develop </p><p>theory </p><p>global </p><p>166 </p><p>on <sup style="top: -0.01em;">varieties </sup></p><p>with non-unit divisorial </p><p>canonical </p><p>heights </p><p>possessing morphisms </p><p>We describe how these </p><p>in </p><p>families and </p><p>heights vary </p><p>be used for </p><p>algebraic </p><p>eigenclasses. </p><p>which </p><p>may </p><p>of canonical </p><p>the </p><p>computational purposes. </p><p>give algorithms </p><p>on abelian varieties has had </p><p>of </p><p>arithmetic </p><p>The </p><p>theory </p><p>heights </p><p>profound </p><p>several </p><p>field </p><p>Likewise, </p><p>throughout </p><p>applications </p><p>geometry. </p><p>applications </p><p>and </p><p>K3 canonical </p><p>for </p><p>arithmetic </p><p>many </p><p>It <sup style="top: -0.01em;">is </sup>our </p><p>questions </p><p>open </p><p>heights </p><p>in </p><p>that the </p><p>likewise </p><p>of canonical </p><p>are described </p><p>[19]. </p><p>hope </p><p>general theory </p><p>in </p><p>will </p><p>in </p><p>useful </p><p>this </p><p>the </p><p>described </p><p>paper </p><p>prove </p><p>studying </p><p>heights </p><p>arithmetic </p><p>of varieties. </p><p>properties </p><p>1. Global canonical </p><p>heights </p><p>In this <sup style="top: 0.01em;">section </sup>we <sup style="top: -0.01em;">fix </sup>the </p><p>data: </p><p>following </p><p>K</p><p>a</p><p>field with </p><p>a</p><p>set of </p><p>absolute values </p><p>proper </p><p>satisfying </p><p>since </p><p>global </p><p>complete </p><p>formula. Wewill call such </p><p>a</p><p>field </p><p>aa</p><p>global heightfield, </p><p>function on </p><p>product </p><p>a</p><p>it is for such fields that one can define </p><p>height </p><p>pn( K). </p><p>could be </p><p>a</p><p>number <sup style="top: 0.01em;">field </sup>or a one <sup style="top: 0.01em;">variable </sup>function </p><p>(For example, K </p><p>field. ) </p><p>V/K </p><p>a</p><p>smooth, </p><p>variety. </p><p>projective </p><p>a</p><p>a</p><p>a</p><p>V ~ </p><p>V</p><p>defined over K. </p><p>0</p><p>~</p><p>~: </p><p>morphism </p><p>R. </p><p>divisor <sub style="top: 0.16em;">class q </sub>E </p><p>Weil </p><p><sub style="top: 0.17em;">Pic(V) </sub>0 </p><p>~ R </p><p>to </p><p>function </p><p>~. </p><p>height </p><p>V(K) </p><p>corresponding </p><p>hV,~ </p><p>hV,~: </p><p>for details about </p><p>fields and </p><p>2, 3, 4, </p><p>(See [8], </p><p>global height </p><p>height </p><p>with </p><p>Chapters </p><p>is an </p><p>functions on </p><p>Wefurther assume </p><p>that q </p><p>we assume <sup style="top: -0.01em;">that </sup></p><p>for 0 </p><p>eigenclass </p><p>varieties.) </p><p>than 1. In other </p><p>words, </p><p>eigenvalue greater </p><p>It follows from </p><p>of </p><p>functions </p><p>that </p><p>functoriality </p><p>height </p><p>[8] </p><p>Weil </p><p>and the choice of </p><p>The </p><p>the </p><p>on the </p><p>V, </p><p>0, </p><p>map </p><p>Ov(1) </p><p>variety </p><p>depends </p><p>first </p><p>Our </p><p>P</p><p>E</p><p>function </p><p>but it is bounded </p><p>of </p><p>height </p><p>independently </p><p>V (K). </p><p>which </p><p>hV,~, </p><p>result </p><p>the </p><p>that there exists </p><p>a</p><p>Weil function associated </p><p>for </p><p>says </p><p>to ~ </p><p>Ov(1) </p><p>entirely disappears. </p><p>THEOREM </p><p>1.1. </p><p>a</p><p>With notation as </p><p>there </p><p>exists </p><p>above, </p><p>uniquefunction </p><p>167 </p><p>the </p><p>two conditions : </p><p>satisfying </p><p>following </p><p>in Theorem 1.1 the canonical </p><p>Wecall the function </p><p>described </p><p>V,~,~ </p><p>height </p><p><sup style="top: -0.01em;">If </sup>one or more </p><p>divisor </p><p>associated to the </p><p>and the </p><p>on </p><p>V</p><p>class ~ </p><p>q, </p><p>0. </p><p>morphism </p><p>it </p><p>is </p><p>will sometimes omit </p><p>of the elements of the </p><p>we </p><p>clear, </p><p>0) </p><p>triple (V, </p><p>from </p><p>notation. </p><p>the </p><p>1. </p><p>A</p><p>an </p><p>let </p><p><sub style="top: 0.18em;">[n] : </sub>A - </p><p>A</p><p>be the </p><p>Let </p><p>be </p><p>abelian </p><p>variety, </p><p>multiplica- </p><p>divisor. </p><p>Example </p><p>tion-by-n map </p><p>is, </p><p>for some n </p><p>and <sub style="top: 0.16em;">let q </sub>E </p><p>be </p><p>a</p><p>2, </p><p>Pic(A) </p><p>symmetric </p><p>As </p><p>is </p><p>one then has the </p><p>relation </p><p>well-known, </p><p>= q.) </p><p>[-1]*~ </p><p>[n]*= </p><p>(That </p><p>n2TJ, </p><p>a</p><p>canonical </p><p>so one obtains </p><p>height </p><p>satisfying ~(nP) = </p><p>h~ </p><p>hA,~,[n] </p><p>andTate. </p><p>Néron </p><p>This is the classical canonical </p><p>constructed </p><p>height </p><p>by </p><p>n2~(P). </p><p>of Theorem 1.1 <sup style="top: 0.01em;">is </sup>an </p><p>for </p><p>Our </p><p>easy </p><p>(See, </p><p>[8, Chapter 5].) </p><p>argument </p><p>proof </p><p>more </p><p>example, </p><p>a</p><p>extension of Tate’s </p><p>to </p><p>slightly </p><p>general setting. </p><p>X</p><p>C</p><p></p><ul style="display: flex;"><li style="flex:1">P2 </li><li style="flex:1">P2be </li></ul><p></p><p>a</p><p>smooth K3surface </p><p>The two </p><p>the intersec- </p><p>Example<sup style="top: -0.17em;">2. Let </sup></p><p>given by </p><p>S</p><p>a</p><p>S~P2 </p><p>are </p><p>tion of </p><p>a</p><p>and </p><p>(2, 2)-form </p><p>(1, 1)-form. </p><p>projections </p><p><sub style="top: 0.11em;">0-2: </sub>S~ </p><p>S. Let double </p><p>so </p><p>each </p><p>an involution </p><p>covers, </p><p>on S, </p><p>o-1, </p><p>gives </p><p>say </p><p>and </p><p>be </p><p>sections of </p><p>Ç1, e2 F- </p><p>let 0 </p><p>Pic(S) </p><p>hyperplane </p><p>type (1, 0) </p><p>(0, 1) respectively, </p><p>+</p><p>2</p><p>and define divisor classes on S </p><p>the formulas </p><p>B13, </p><p>by </p><p>Then one can check that </p><p>Further </p><p>0’2 0 03C31. </p><p>let 0 = </p><p>obtain two canonical </p><p>and </p><p>It </p><p>is worth </p><p>so we </p><p>heights </p><p>noting </p><p>hS,~,~+ </p><p>hS,~-1,~-. </p><p>in </p><p>of the <sup style="top: 0.01em;">effective </sup>cone </p><p>each <sup style="top: -0.02em;">lie </sup>on <sup style="top: -0.02em;">the </sup></p><p>that </p><p>and </p><p>~ R, </p><p>~+ </p><p>~- </p><p>Pic(S) </p><p>is useful </p><p>for </p><p>boundary </p><p>+</p><p>is </p><p>This </p><p>but that <sup style="top: 0.01em;">their </sup>sum </p><p>the arithmetic of S. </p><p>observation </p><p>this </p><p>~+ <br>~- </p><p>ample. </p><p>studying </p><p>a</p><p>For more </p><p>details </p><p>concerning </p><p>example, including </p><p>stated </p><p>of the <sup style="top: 0.01em;">facts </sup>we have </p><p>and </p><p>formulas that can be used to </p><p>proof </p><p>explicit </p><p>the canonical </p><p>see </p><p>and </p><p>height, </p><p>compute </p><p>[19] </p><p>[3]. </p><p>IPn </p><p>~ Pn be </p><p>a</p><p>3. </p><p>Let </p><p>of </p><p>d : 2. Then </p><p>any </p><p>Example </p><p>0: </p><p>degree </p><p>so we can </p><p>morphism </p><p>~*~ </p><p>7L </p><p>divisor <sub style="top: 0.16em;">class q </sub>E </p><p>satisfies </p><p>Theorem </p><p>Pic(Pn) ~ </p><p>d~, </p><p>but never </p><p>apply </p><p>1.1. </p><p>had </p><p>been observed </p><p>earlier </p><p>Notice </p><p>Tate, </p><p>(This </p><p>just </p><p>by </p><p>published.) </p><p>that </p><p>as in the case of abelian </p><p>one can </p><p>to be </p><p>varieties, </p><p>take q </p><p>ample, </p><p>which means <sup style="top: 0.01em;">that </sup></p><p>1.1.1 below is </p><p>Corollary </p><p>applicable. </p><p>a</p><p>the canonical </p><p>we can </p><p>result </p><p>Using </p><p>height, </p><p>easily </p><p>prove </p><p>strong rationality </p><p>168 </p><p>for </p><p>P</p><p>is called </p><p>We </p><p>recall that </p><p>a</p><p>points. </p><p>point </p><p>pre-periodic for ~ </p><p>pre-periodic </p><p>if its orbit </p><p>P</p><p>is </p><p><sup style="top: 0.01em;">if </sup>some iterate </p><p>is </p><p>is finite. </p><p>~i(P) </p><p>(Equivalently, </p><p>pre-periodic </p><p>a</p><p>periodic.) </p><p>bound for </p><p>Lewis </p><p>The </p><p>corollary gives </p><p>strong rationality </p><p>following </p><p>pre-periodic </p><p>and </p><p>It </p><p>results of Narkiewicz </p><p>who </p><p>generalizes </p><p>[13] </p><p>[10], </p><p>prove </p><p>points. </p><p>in </p><p>K-rational </p><p>Lewis’ </p><p>the cases </p><p>that there are </p><p>only <sup style="top: 0.02em;">finitely </sup>many </p><p>pre-periodic points </p><p>An and </p><p>V</p><p>Pn </p><p>in </p><p>uses basic </p><p>V</p><p>respectively. </p><p>functions, </p><p>few lines. </p><p>proof, </p><p>particular, </p><p>pro- </p><p>reduces </p><p>but our use of the canonical </p><p>of Weil </p><p>to </p><p>height </p><p>height </p><p>perties </p><p>the </p><p>a</p><p>just </p><p>proof </p><p>COROLLARY </p><p>1.1.1. Let </p><p>V/K ~VIK be </p><p>a</p><p>over </p><p>a</p><p>0: </p><p>morphism defined </p><p>divisor class </p><p>number<sub style="top: 0.17em;">field </sub></p><p>and </p><p>that </p><p>there is an </p><p>suppose </p><p>K, </p><p>ample </p><p>q</p><p>satisfying </p><p>Let </p><p>P</p><p>E</p><p>(1). </p><p>V (K). </p><p>P</p><p>0. </p><p><sup style="top: -0.18em;">is </sup>pre-periodicfor 4J </p><p>contains </p><p>only if </p><p><sub style="top: 0.18em;">if</sub>and </p><p>only <sup style="top: 0.01em;">finitely </sup>many </p><p>(a) </p><p>hV,7J,f/J(P) </p><p>More </p><p>gen- </p><p>0. </p><p>pre-periodic points for </p><p>(b) V (K) </p><p>erally, </p><p>is </p><p>a</p><p>set </p><p>bounded </p><p>so in </p><p>it contains </p><p>of </p><p>points defined </p><p>height, </p><p>particular </p><p>onlyfinitely many </p><p>degree. </p><p>over all extensions <sub style="top: 0.19em;">of</sub>K<sub style="top: 0.19em;">of</sub>a bounded </p><p>If </p><p>P</p><p>is </p><p>for </p><p>then </p><p><sup style="top: 0.01em;">takes </sup>on </p><p>0, </p><p>Proof. (a) </p><p>many </p><p>only finitely </p><p>pre-periodic </p><p>hV,~(~n(P)) </p><p>distinct </p><p>and so </p><p>values, </p><p>if </p><p>then </p><p>0, </p><p>Conversely, </p><p>hV,~,~(P) </p><p>{P, </p><p>Hence the set </p><p></p><ul style="display: flex;"><li style="flex:1">is </li><li style="flex:1">is </li></ul><p></p><p>a</p><p>set of bounded </p><p>so <sup style="top: -0.01em;">it </sup></p><p>finite. </p><p>is </p><p>...} </p><p>O(P), ~2(P), </p><p>height, </p><p>Therefore </p><p>this is where we use the </p><p>fact that </p><p>is </p><p>P</p><p>(Note </p><p>~</p><p>ample.) </p><p>0</p><p>pre- </p><p>periodic. </p><p>If </p><p>P</p><p>is </p><p>for </p><p>then </p><p>from </p><p>so </p><p>~, </p><p>(b) </p><p>pre-periodic </p><p>is bounded. </p><p>(a), </p><p>V,~,~(P) = </p><p>hV,~(P) = </p><p>form </p><p>+</p><p>This shows that the </p><p>a</p><p>0(l) </p><p>V,~,~(P) </p><p>pre-periodic points </p><p>set of </p><p>bounded </p><p>The rest </p><p>of </p><p>is then </p><p>since </p><p>a</p><p>set </p><p>of </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    44 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us