
<p>COMPOSITIO MATHEMATICA </p><p>GREGORY S. CALL JOSEPH H. SILVERMAN </p><p>Canonical heights on varieties with morphisms </p><p>Compositio Mathematica, tome 89, n<sup style="top: -0.2793em;">o </sup>2 (1993), p. 163-205 </p><p><<a href="/goto?url=http://www.numdam.org/item?id=CM_1993__89_2_163_0" target="_blank">http://www.numdam.org/item?id=CM_1993__89_2_163_0</a>> </p><p>© Foundation Compositio Mathematica, 1993, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (<a href="/goto?url=http://http://www.compositio.nl/" target="_blank">http: </a><a href="/goto?url=http://http://www.compositio.nl/" target="_blank">//http://www.compositio.nl/</a>) implique l’accord avec les conditions gé- nérales d’utilisation (<a href="/goto?url=http://www.numdam.org/conditions" target="_blank">http://www.numdam.org/conditions</a>). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. </p><p>Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques </p><p><a href="/goto?url=http://www.numdam.org/" target="_blank">http://www.numdam.org/ </a></p><p>1993. </p><p>Mathematica 89: 163 </p><p>163-205, </p><p>Compositio </p><p>©</p><p>1993 Kluwer </p><p>Publishers. Printed in </p><p>the Netherlands. </p><p>Academic </p><p>Canonical </p><p>on <sup style="top: 0.01em;">varieties </sup>with </p><p>heights </p><p>morphisms </p><p>GREGORY </p><p>Mathematics </p><p>S. CALL* </p><p>Amherst </p><p>Amherst, </p><p>College, </p><p>MA </p><p>USA </p><p>01002, </p><p>Department, </p><p>and </p><p>JOSEPHH. SILVERMAN** </p><p>Mathematics </p><p>Brown </p><p>RI </p><p>Providence, </p><p>USA </p><p>02912, </p><p>Department, </p><p>University, </p><p>Received 13 </p><p>in final form 16 October 1992 </p><p>1992; </p><p>May </p><p>accepted </p><p>Let </p><p>A</p><p>an </p><p>be </p><p>abelian </p><p>defined over </p><p>a</p><p>field </p><p>K</p><p>D</p><p>number </p><p>have </p><p>and let </p><p>be </p><p>a</p><p>a</p><p>a</p><p>variety </p><p><sup style="top: -0.01em;">divisor </sup>on A. Néron and Tate </p><p>the existence of </p><p>symmetric </p><p>canonical </p><p>proven </p><p>on </p><p>characterized </p><p>and satisfies </p><p>the </p><p>that </p><p>is </p><p>height hA,D </p><p>A(k) </p><p>by </p><p>properties </p><p>hA,D </p><p>Weil </p><p>for the divisor </p><p>D</p><p>for all </p><p>height </p><p>A,D([m]P) </p><p>m2hA,D(P) </p><p>Silverman </p><p>that on certain K3 </p><p>surfaces </p><p>S</p><p>P ~ A(K). Similarly, </p><p>[19] proved </p><p>with </p><p>a</p><p>non-trivial </p><p>S ~ </p><p>S</p><p>there are two canonical </p><p>~: </p><p>automorphism </p><p>height </p><p>for </p><p>functions </p><p>characterized </p><p>the </p><p>that </p><p>are </p><p>Weil </p><p>hs </p><p>by </p><p>properties </p><p>they </p><p>heights </p><p>+</p><p>certain divisors </p><p>E</p><p>and <sub style="top: 0.19em;">satisfy S(~P) = (7 </sub></p><p>for all </p><p>P</p><p>E</p><p>43) 1 S(P) </p><p>S(K) . </p><p>In </p><p>we will </p><p>this </p><p>these </p><p>to </p><p>a</p><p>construct </p><p>canonical </p><p>paper </p><p>on an </p><p>generalize </p><p>examples </p><p>a</p><p>V</p><p>V - </p><p>V</p><p>and </p><p>a</p><p>height </p><p>divisor </p><p>arbitrary variety </p><p>~: </p><p>morphism </p><p>eigenvalue </p><p>strictly greater </p><p>possessing </p><p>which is an </p><p>with </p><p>class q </p><p>for 0 </p><p>eigenclass </p><p>than 1. Wewill also </p><p>a</p><p>numberof results about these </p><p>canonical </p><p>prove </p><p>which should be useful for </p><p>heights </p><p>compu- </p><p>arithmetic </p><p>and </p><p>numerical </p><p>applications </p><p>tations. We<sup style="top: 0.01em;">now </sup>describe the contents of this </p><p>in </p><p>more detail. </p><p>paper </p><p>Let </p><p>V</p><p>be </p><p>adefined over </p><p>a</p><p>number field </p><p>let </p><p>a</p><p>V ~ </p><p>V</p><p></p><ul style="display: flex;"><li style="flex:1">be </li><li style="flex:1">K, </li></ul><p></p><p>variety </p><p>~: </p><p>and </p><p>that there is </p><p>a</p><p>divisor <sub style="top: 0.16em;">class q </sub>E </p><p>main result </p><p>~ R such </p><p>morphism, </p><p>suppose </p><p>Div(V) </p><p>that </p><p>0*,q </p><p>some 03B1 &#x3E; 1. </p><p>Our </p><p>first </p><p>aq<sup style="top: -0.16em;">for </sup></p><p>that </p><p>says </p><p>(Theorem 1.1) </p><p>there is </p><p>a</p><p>canonical </p><p>function </p><p>height </p><p>characterized </p><p>the two </p><p>that </p><p>is </p><p>a</p><p>Weil </p><p>function for </p><p>by </p><p>properties </p><p>V,~,~ </p><p>height </p><p>the divisor class </p><p>and </p><p>~</p><p>*</p><p>Research </p><p><sub style="top: 0.14em;">by</sub>NSFROA-DMS-8913113andan </p><p>supported by </p><p>Amherst </p><p>Trustee </p><p>supported </p><p>Faculty </p><p>Fellowship. </p><p>** </p><p>Research </p><p>and </p><p>NSFDMS-8913113 </p><p>a</p><p>Sloan </p><p>Foundation </p><p>Fellowship. </p><p>164 </p><p>of the </p><p>that </p><p>is </p><p>canonical </p><p>we show </p><p>then </p><p>As an </p><p>if 17 </p><p>height, </p><p>points </p><p>ample, </p><p>application </p><p>contains </p><p>which <sup style="top: 0.01em;">are </sup></p><p>only </p><p>finitely many </p><p>[13] </p><p>0-periodic, generalizing </p><p>V(K) </p><p>Narkiewicz </p><p>and Lewis </p><p>results of </p><p>[10]. </p><p>has shown howto </p><p>intoasumoflocal </p><p>the canonical </p><p>on </p><p>Néron </p><p>[8]) </p><p>height </p><p>(see </p><p>decomp<sub style="top: 1.07em;">A</sub>o<sub style="top: 1.07em;">,</sub>s<sub style="top: 1.07em;">D</sub>e<sub style="top: 1.07em;">(P) = 03A3 </sub></p><p>hl,D </p><p>anabelian </p><p><sub style="top: 0.16em;">v), </sub>where </p><p>variety </p><p>nVÂA,D(P, </p><p>heights, </p><p><sup style="top: 0.01em;">is </sup>over the distinct </p><p>of </p><p><sup style="top: 0.01em;">the </sup>sum </p><p>canonical </p><p>sum </p><p>We likewise show that the </p><p>places v </p><p>K(P). </p><p>constructed </p><p>in Theorem 1.1 can be </p><p>as </p><p>a</p><p>height </p><p>decomposed </p><p>V,~,~ </p><p>Here </p><p>E</p><p>is </p><p>divisor </p><p></p><ul style="display: flex;"><li style="flex:1">in </li><li style="flex:1">class </li></ul><p></p><p>the divisor </p><p>and </p><p>q, </p><p>any </p><p>E</p><p>with the additional </p><p>is </p><p>a</p><p>Weil local </p><p>if f is any </p><p>function for </p><p>the divisor </p><p>height </p><p>property </p><p>constant </p><p>+</p><p>aE </p><p>then there is </p><p>a</p><p>that </p><p>function </p><p>~*E </p><p>satisfying </p><p>div( f ), </p><p>a</p><p>so that </p><p>in Theorem </p><p>proven </p><p>The existence of the canonical local </p><p>and the fact that the canonical </p><p>is </p><p>2.1, </p><p>is </p><p>height </p><p>V,~,~ </p><p>is the sumof the local </p><p>height </p><p>heights </p><p>V,~,~ </p><p>in Theorem 2.3. </p><p>two Weil </p><p>given </p><p>for </p><p>a</p><p>divisor differ </p><p>a</p><p>bounded </p><p>and </p><p>so </p><p>amount, </p><p>Any </p><p>heights </p><p>given </p><p>by </p><p>in </p><p>the difference of the canonical </p><p>Weil </p><p>particular </p><p>height </p><p>any given </p><p>V,~,~ </p><p>is </p><p>a</p><p>on </p><p>and </p><p>For </p><p>bounded </p><p>constant </p><p>V, q, </p><p>0</p><p>height </p><p>by </p><p>important </p><p>hV,~ </p><p>depending </p><p>hV,~. </p><p>it is </p><p>to have an </p><p>bound for this constant. </p><p>manyapplications </p><p>explicit </p><p>Such aboundwas </p><p>and Zimmer </p><p>for Weierstrass </p><p>given byDem’janenko [4] </p><p>curves, </p><p>[25] </p><p>families of </p><p>elliptic </p><p>for Mumford families </p><p>Manin and Zarhin </p><p>by </p><p>[12] </p><p>of abelian </p><p>and </p><p>Silverman and Tate </p><p>for </p><p>families </p><p>of </p><p>varieties, </p><p>by </p><p>[15] </p><p>arbitrary </p><p>abelian varieties. </p><p>V - T </p><p>Wefollowthe </p><p>in </p><p>andconsider </p><p>a</p><p>approach </p><p>[15] </p><p>family </p><p>of varieties </p><p>with </p><p>a</p><p>V ~ V <sup style="top: 0.01em;">over </sup></p><p>T</p><p>and </p><p>a</p><p>divisor </p><p>0: </p><p>class 7y </p><p>satisfying </p><p>map </p><p>Then on </p><p>almost all </p><p>there is </p><p>a</p><p>canonical </p><p>~*~ = </p><p><sup style="top: -0.01em;">and</sup>we </p><p>03B1~. </p><p>fibers ’V, </p><p>height </p><p>Vt,~t~t, </p><p>can ask to </p><p>boundthe difference between this </p><p>a</p><p>Weil </p><p>and </p><p>height </p><p>given </p><p>in </p><p>terms </p><p>t. </p><p>In Theorem 3.1 we show that there </p><p>of the </p><p>height </p><p>hV,~ </p><p>parameter </p><p>are </p><p>constants </p><p>so that </p><p>ci, C2 </p><p>165 </p><p>a</p><p>similar </p><p>between </p><p>This </p><p>We </p><p>also </p><p>the difference </p><p>estimate for </p><p>3.2) </p><p>give (Theorem </p><p>the canonical local </p><p>and </p><p>a</p><p>Weil local </p><p>height AV,E . </p><p>height Vt,Et,~t </p><p>given </p><p>result </p><p>for abelian </p><p>varieties. </p><p>generalizes Lang’s </p><p>Suppose </p><p>Weil </p><p>[8] </p><p>a</p><p>now <sup style="top: -0.01em;">that </sup>the base </p><p>T</p><p>of the </p><p>a</p><p>V- T is </p><p>a</p><p>let </p><p>be </p><p>curve, </p><p>hT </p><p>family </p><p>T<sub style="top: 0.21em;">corresponding </sub></p><p>and let P: T ~ V </p><p>on </p><p>to </p><p>divisor of </p><p>1, </p><p>the </p><p>height </p><p>section. The </p><p>degree </p><p>over </p><p>be </p><p>a</p><p>fiber </p><p>V</p><p>of Yis </p><p>a</p><p>function </p><p>and </p><p>generic </p><p>variety </p><p>global </p><p>e</p><p>field </p><p>the section P<sub style="top: 0.22em;">corresponds </sub>to </p><p>a</p><p>rational </p><p>Pv </p><p>K(T), </p><p>V(K(T)), </p><p>point </p><p>Theorem 1.1 </p><p>the </p><p>a</p><p>canonical </p><p>which can be evaluated at </p><p>gives </p><p>height </p><p>Vt,~V,~V <br>There <sup style="top: -0.01em;">are </sup>then three </p><p>and </p><p>which </p><p>hT </p><p>we show in </p><p>Pv. </p><p>point </p><p>be </p><p>heights </p><p>V,~V,~V,Vt,~t,~V, </p><p>a</p><p>result of Silverman </p><p>may </p><p>compared. Generalizing </p><p>[15], </p><p>Theorem 4.1 that </p><p>Silverman’s </p><p>result has been </p><p>and </p><p>in various </p><p>original </p><p>[2], </p><p>generalized </p><p>Silverman </p><p>strengthened </p><p>[20] </p><p>Call </p><p>Green </p><p>and Tate </p><p>We </p><p>ways by </p><p>have not </p><p>[6], Lang [8, 9], </p><p>[22]. </p><p>been able to </p><p>of these </p><p>results <sup style="top: -0.01em;">in </sup>our </p><p>yet </p><p>prove any </p><p>stronger </p><p>general </p><p>situation. </p><p>In the fifth section we <sup style="top: 0.01em;">take </sup></p><p>thecanonical local </p><p>the </p><p>of how one </p><p>up </p><p>question </p><p>and </p><p>might efficiently </p><p>thecanoni- </p><p>compute </p><p>heights V,E,~, </p><p>therebyeventually </p><p>cal </p><p>In the case that </p><p>V</p><p><sup style="top: -0.01em;">is </sup>an </p><p>Tate </p><p>curve, </p><p>global height </p><p>(unpub- </p><p>that the </p><p>hV,E,CP’ </p><p>elliptic </p><p>a</p><p>series for </p><p>lished) gave </p><p>completion </p><p>rapidly convergent </p><p>v) </p><p>provided </p><p>V,(O),[2](P, </p><p>of </p><p>K</p><p>at v is not </p><p>and Silverman </p><p>Kv </p><p>closed, </p><p>algebraically </p><p>[18] </p><p>give </p><p>described </p><p>a</p><p>modification of Tate’s series which works for all <sup style="top: -0.01em;">v. </sup>We </p><p>series <sup style="top: 0.01em;">for </sup>our canonical local </p><p>the series of Tate </p><p>heights </p><p>generalizing </p><p>and </p><p>Â V,E,cp </p><p>and Silverman </p><p>how such </p><p>discuss </p><p>5.1) </p><p>(Theorem 5.3) </p><p>practice. </p><p>briefly </p><p>(Proposition </p><p>in </p><p>series could be </p><p>implemented </p><p>The final section is devoted to </p><p>aof </p><p>canonical local </p><p>for </p><p>description </p><p>heights </p><p>non-archimedean </p><p>in termsofintersection </p><p>In the case ofabelian </p><p>intersection </p><p>places </p><p>varieties it is knownthat the local </p><p>theory. </p><p>computed </p><p>general </p><p>every </p><p>extends </p><p>canbe </p><p>heights </p><p>using </p><p>on the Néron model. We show in </p><p>that </p><p>if </p><p>V</p><p>a</p><p>model V </p><p>has </p><p>theory </p><p>a</p><p>local </p><p>such that </p><p>Ov </p><p>over </p><p>rational </p><p>a</p><p>extends to </p><p>complete </p><p>ring </p><p>point </p><p>that the </p><p>V</p><p>section and such </p><p>V ~ </p><p>to </p><p>a</p><p>finite </p><p>0: </p><p></p><ul style="display: flex;"><li style="flex:1">morphism </li><li style="flex:1">morphism </li></ul><p></p><p>V ~ </p><p>then the canonical local </p><p>is </p><p>(D: </p><p>a</p><p>certain </p><p>intersection </p><p>V, </p><p>height </p><p>the </p><p>given by </p><p>question </p><p>V. Weleave for future </p><p>index on </p><p>exist. </p><p>To </p><p>of whether </p><p>such models </p><p>study </p><p>in this </p><p>we </p><p>a</p><p>of </p><p>and </p><p>local </p><p>summarize, </p><p>paper </p><p>develop </p><p>theory </p><p>global </p><p>166 </p><p>on <sup style="top: -0.01em;">varieties </sup></p><p>with non-unit divisorial </p><p>canonical </p><p>heights </p><p>possessing morphisms </p><p>We describe how these </p><p>in </p><p>families and </p><p>heights vary </p><p>be used for </p><p>algebraic </p><p>eigenclasses. </p><p>which </p><p>may </p><p>of canonical </p><p>the </p><p>computational purposes. </p><p>give algorithms </p><p>on abelian varieties has had </p><p>of </p><p>arithmetic </p><p>The </p><p>theory </p><p>heights </p><p>profound </p><p>several </p><p>field </p><p>Likewise, </p><p>throughout </p><p>applications </p><p>geometry. </p><p>applications </p><p>and </p><p>K3 canonical </p><p>for </p><p>arithmetic </p><p>many </p><p>It <sup style="top: -0.01em;">is </sup>our </p><p>questions </p><p>open </p><p>heights </p><p>in </p><p>that the </p><p>likewise </p><p>of canonical </p><p>are described </p><p>[19]. </p><p>hope </p><p>general theory </p><p>in </p><p>will </p><p>in </p><p>useful </p><p>this </p><p>the </p><p>described </p><p>paper </p><p>prove </p><p>studying </p><p>heights </p><p>arithmetic </p><p>of varieties. </p><p>properties </p><p>1. Global canonical </p><p>heights </p><p>In this <sup style="top: 0.01em;">section </sup>we <sup style="top: -0.01em;">fix </sup>the </p><p>data: </p><p>following </p><p>K</p><p>a</p><p>field with </p><p>a</p><p>set of </p><p>absolute values </p><p>proper </p><p>satisfying </p><p>since </p><p>global </p><p>complete </p><p>formula. Wewill call such </p><p>a</p><p>field </p><p>aa</p><p>global heightfield, </p><p>function on </p><p>product </p><p>a</p><p>it is for such fields that one can define </p><p>height </p><p>pn( K). </p><p>could be </p><p>a</p><p>number <sup style="top: 0.01em;">field </sup>or a one <sup style="top: 0.01em;">variable </sup>function </p><p>(For example, K </p><p>field. ) </p><p>V/K </p><p>a</p><p>smooth, </p><p>variety. </p><p>projective </p><p>a</p><p>a</p><p>a</p><p>V ~ </p><p>V</p><p>defined over K. </p><p>0</p><p>~</p><p>~: </p><p>morphism </p><p>R. </p><p>divisor <sub style="top: 0.16em;">class q </sub>E </p><p>Weil </p><p><sub style="top: 0.17em;">Pic(V) </sub>0 </p><p>~ R </p><p>to </p><p>function </p><p>~. </p><p>height </p><p>V(K) </p><p>corresponding </p><p>hV,~ </p><p>hV,~: </p><p>for details about </p><p>fields and </p><p>2, 3, 4, </p><p>(See [8], </p><p>global height </p><p>height </p><p>with </p><p>Chapters </p><p>is an </p><p>functions on </p><p>Wefurther assume </p><p>that q </p><p>we assume <sup style="top: -0.01em;">that </sup></p><p>for 0 </p><p>eigenclass </p><p>varieties.) </p><p>than 1. In other </p><p>words, </p><p>eigenvalue greater </p><p>It follows from </p><p>of </p><p>functions </p><p>that </p><p>functoriality </p><p>height </p><p>[8] </p><p>Weil </p><p>and the choice of </p><p>The </p><p>the </p><p>on the </p><p>V, </p><p>0, </p><p>map </p><p>Ov(1) </p><p>variety </p><p>depends </p><p>first </p><p>Our </p><p>P</p><p>E</p><p>function </p><p>but it is bounded </p><p>of </p><p>height </p><p>independently </p><p>V (K). </p><p>which </p><p>hV,~, </p><p>result </p><p>the </p><p>that there exists </p><p>a</p><p>Weil function associated </p><p>for </p><p>says </p><p>to ~ </p><p>Ov(1) </p><p>entirely disappears. </p><p>THEOREM </p><p>1.1. </p><p>a</p><p>With notation as </p><p>there </p><p>exists </p><p>above, </p><p>uniquefunction </p><p>167 </p><p>the </p><p>two conditions : </p><p>satisfying </p><p>following </p><p>in Theorem 1.1 the canonical </p><p>Wecall the function </p><p>described </p><p>V,~,~ </p><p>height </p><p><sup style="top: -0.01em;">If </sup>one or more </p><p>divisor </p><p>associated to the </p><p>and the </p><p>on </p><p>V</p><p>class ~ </p><p>q, </p><p>0. </p><p>morphism </p><p>it </p><p>is </p><p>will sometimes omit </p><p>of the elements of the </p><p>we </p><p>clear, </p><p>0) </p><p>triple (V, </p><p>from </p><p>notation. </p><p>the </p><p>1. </p><p>A</p><p>an </p><p>let </p><p><sub style="top: 0.18em;">[n] : </sub>A - </p><p>A</p><p>be the </p><p>Let </p><p>be </p><p>abelian </p><p>variety, </p><p>multiplica- </p><p>divisor. </p><p>Example </p><p>tion-by-n map </p><p>is, </p><p>for some n </p><p>and <sub style="top: 0.16em;">let q </sub>E </p><p>be </p><p>a</p><p>2, </p><p>Pic(A) </p><p>symmetric </p><p>As </p><p>is </p><p>one then has the </p><p>relation </p><p>well-known, </p><p>= q.) </p><p>[-1]*~ </p><p>[n]*= </p><p>(That </p><p>n2TJ, </p><p>a</p><p>canonical </p><p>so one obtains </p><p>height </p><p>satisfying ~(nP) = </p><p>h~ </p><p>hA,~,[n] </p><p>andTate. </p><p>Néron </p><p>This is the classical canonical </p><p>constructed </p><p>height </p><p>by </p><p>n2~(P). </p><p>of Theorem 1.1 <sup style="top: 0.01em;">is </sup>an </p><p>for </p><p>Our </p><p>easy </p><p>(See, </p><p>[8, Chapter 5].) </p><p>argument </p><p>proof </p><p>more </p><p>example, </p><p>a</p><p>extension of Tate’s </p><p>to </p><p>slightly </p><p>general setting. </p><p>X</p><p>C</p><p></p><ul style="display: flex;"><li style="flex:1">P2 </li><li style="flex:1">P2be </li></ul><p></p><p>a</p><p>smooth K3surface </p><p>The two </p><p>the intersec- </p><p>Example<sup style="top: -0.17em;">2. Let </sup></p><p>given by </p><p>S</p><p>a</p><p>S~P2 </p><p>are </p><p>tion of </p><p>a</p><p>and </p><p>(2, 2)-form </p><p>(1, 1)-form. </p><p>projections </p><p><sub style="top: 0.11em;">0-2: </sub>S~ </p><p>S. Let double </p><p>so </p><p>each </p><p>an involution </p><p>covers, </p><p>on S, </p><p>o-1, </p><p>gives </p><p>say </p><p>and </p><p>be </p><p>sections of </p><p>Ç1, e2 F- </p><p>let 0 </p><p>Pic(S) </p><p>hyperplane </p><p>type (1, 0) </p><p>(0, 1) respectively, </p><p>+</p><p>2</p><p>and define divisor classes on S </p><p>the formulas </p><p>B13, </p><p>by </p><p>Then one can check that </p><p>Further </p><p>0’2 0 03C31. </p><p>let 0 = </p><p>obtain two canonical </p><p>and </p><p>It </p><p>is worth </p><p>so we </p><p>heights </p><p>noting </p><p>hS,~,~+ </p><p>hS,~-1,~-. </p><p>in </p><p>of the <sup style="top: 0.01em;">effective </sup>cone </p><p>each <sup style="top: -0.02em;">lie </sup>on <sup style="top: -0.02em;">the </sup></p><p>that </p><p>and </p><p>~ R, </p><p>~+ </p><p>~- </p><p>Pic(S) </p><p>is useful </p><p>for </p><p>boundary </p><p>+</p><p>is </p><p>This </p><p>but that <sup style="top: 0.01em;">their </sup>sum </p><p>the arithmetic of S. </p><p>observation </p><p>this </p><p>~+ <br>~- </p><p>ample. </p><p>studying </p><p>a</p><p>For more </p><p>details </p><p>concerning </p><p>example, including </p><p>stated </p><p>of the <sup style="top: 0.01em;">facts </sup>we have </p><p>and </p><p>formulas that can be used to </p><p>proof </p><p>explicit </p><p>the canonical </p><p>see </p><p>and </p><p>height, </p><p>compute </p><p>[19] </p><p>[3]. </p><p>IPn </p><p>~ Pn be </p><p>a</p><p>3. </p><p>Let </p><p>of </p><p>d : 2. Then </p><p>any </p><p>Example </p><p>0: </p><p>degree </p><p>so we can </p><p>morphism </p><p>~*~ </p><p>7L </p><p>divisor <sub style="top: 0.16em;">class q </sub>E </p><p>satisfies </p><p>Theorem </p><p>Pic(Pn) ~ </p><p>d~, </p><p>but never </p><p>apply </p><p>1.1. </p><p>had </p><p>been observed </p><p>earlier </p><p>Notice </p><p>Tate, </p><p>(This </p><p>just </p><p>by </p><p>published.) </p><p>that </p><p>as in the case of abelian </p><p>one can </p><p>to be </p><p>varieties, </p><p>take q </p><p>ample, </p><p>which means <sup style="top: 0.01em;">that </sup></p><p>1.1.1 below is </p><p>Corollary </p><p>applicable. </p><p>a</p><p>the canonical </p><p>we can </p><p>result </p><p>Using </p><p>height, </p><p>easily </p><p>prove </p><p>strong rationality </p><p>168 </p><p>for </p><p>P</p><p>is called </p><p>We </p><p>recall that </p><p>a</p><p>points. </p><p>point </p><p>pre-periodic for ~ </p><p>pre-periodic </p><p>if its orbit </p><p>P</p><p>is </p><p><sup style="top: 0.01em;">if </sup>some iterate </p><p>is </p><p>is finite. </p><p>~i(P) </p><p>(Equivalently, </p><p>pre-periodic </p><p>a</p><p>periodic.) </p><p>bound for </p><p>Lewis </p><p>The </p><p>corollary gives </p><p>strong rationality </p><p>following </p><p>pre-periodic </p><p>and </p><p>It </p><p>results of Narkiewicz </p><p>who </p><p>generalizes </p><p>[13] </p><p>[10], </p><p>prove </p><p>points. </p><p>in </p><p>K-rational </p><p>Lewis’ </p><p>the cases </p><p>that there are </p><p>only <sup style="top: 0.02em;">finitely </sup>many </p><p>pre-periodic points </p><p>An and </p><p>V</p><p>Pn </p><p>in </p><p>uses basic </p><p>V</p><p>respectively. </p><p>functions, </p><p>few lines. </p><p>proof, </p><p>particular, </p><p>pro- </p><p>reduces </p><p>but our use of the canonical </p><p>of Weil </p><p>to </p><p>height </p><p>height </p><p>perties </p><p>the </p><p>a</p><p>just </p><p>proof </p><p>COROLLARY </p><p>1.1.1. Let </p><p>V/K ~VIK be </p><p>a</p><p>over </p><p>a</p><p>0: </p><p>morphism defined </p><p>divisor class </p><p>number<sub style="top: 0.17em;">field </sub></p><p>and </p><p>that </p><p>there is an </p><p>suppose </p><p>K, </p><p>ample </p><p>q</p><p>satisfying </p><p>Let </p><p>P</p><p>E</p><p>(1). </p><p>V (K). </p><p>P</p><p>0. </p><p><sup style="top: -0.18em;">is </sup>pre-periodicfor 4J </p><p>contains </p><p>only if </p><p><sub style="top: 0.18em;">if</sub>and </p><p>only <sup style="top: 0.01em;">finitely </sup>many </p><p>(a) </p><p>hV,7J,f/J(P) </p><p>More </p><p>gen- </p><p>0. </p><p>pre-periodic points for </p><p>(b) V (K) </p><p>erally, </p><p>is </p><p>a</p><p>set </p><p>bounded </p><p>so in </p><p>it contains </p><p>of </p><p>points defined </p><p>height, </p><p>particular </p><p>onlyfinitely many </p><p>degree. </p><p>over all extensions <sub style="top: 0.19em;">of</sub>K<sub style="top: 0.19em;">of</sub>a bounded </p><p>If </p><p>P</p><p>is </p><p>for </p><p>then </p><p><sup style="top: 0.01em;">takes </sup>on </p><p>0, </p><p>Proof. (a) </p><p>many </p><p>only finitely </p><p>pre-periodic </p><p>hV,~(~n(P)) </p><p>distinct </p><p>and so </p><p>values, </p><p>if </p><p>then </p><p>0, </p><p>Conversely, </p><p>hV,~,~(P) </p><p>{P, </p><p>Hence the set </p><p></p><ul style="display: flex;"><li style="flex:1">is </li><li style="flex:1">is </li></ul><p></p><p>a</p><p>set of bounded </p><p>so <sup style="top: -0.01em;">it </sup></p><p>finite. </p><p>is </p><p>...} </p><p>O(P), ~2(P), </p><p>height, </p><p>Therefore </p><p>this is where we use the </p><p>fact that </p><p>is </p><p>P</p><p>(Note </p><p>~</p><p>ample.) </p><p>0</p><p>pre- </p><p>periodic. </p><p>If </p><p>P</p><p>is </p><p>for </p><p>then </p><p>from </p><p>so </p><p>~, </p><p>(b) </p><p>pre-periodic </p><p>is bounded. </p><p>(a), </p><p>V,~,~(P) = </p><p>hV,~(P) = </p><p>form </p><p>+</p><p>This shows that the </p><p>a</p><p>0(l) </p><p>V,~,~(P) </p><p>pre-periodic points </p><p>set of </p><p>bounded </p><p>The rest </p><p>of </p><p>is then </p><p>since </p><p>a</p><p>set </p><p>of </p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages44 Page
-
File Size-