Covariance Matrices

Covariance Matrices

Covariance Matrices ACM 118 10/29/09 Definitions Let Y = ()YY12,,... Yn be a random vector μ = ( μ12,...,μμn ) Then E(Y)= μ We define the covariance matrix by: cov(YEYEYYEY )=−⎡⎤ [ ] − [ ] T ⎣⎦()() Covariance of Y with itself sometimes referred to as a variance-covariance matrix Definitions Cont. Alternatively, Σ=i, j cov(YYi ,j ) ⎛⎞ΣΣ11K 1n ⎜⎟ Σ=⎜⎟MOM ⎜⎟ ⎝⎠ΣΣmmn1 L ⎡ T ⎤ cov(YYij , ) =− E() Y i EY() i Y j − EY() j ⎣⎢ ( ) ⎦⎥ Properties Let X=AY (A is a non-random matrix). Then: EX[]== E[ AA Y] EY[] Proof: ⎛⎞xx11KK 1nn⎛⎞EE[ x 11] [ x 1 ] ⎜⎟⎜⎟ EX[]== E⎜⎟MOM⎜⎟ M O M ⎜⎟⎜⎟ ⎝⎠xxmmnm11LL⎝⎠EE[] x [] x mn ⎛⎞⎛aa11K 1nnn axaxax 11 11+++ 12 12... 1 1 ⎞ ⎜⎟⎜ ⎟ AA==⎜⎟⎜MOM, X M ⎟ ⎜⎟⎜ ⎟ ⎝⎠⎝aammnmmmmmnmn11122L axaxax+++... ⎠ Proof Cont. ⎛⎞ax11EE[] 11+++ ax 12 []... 12 ax 1nn E [] 1 ⎜⎟ EX[]A = ⎜⎟M ⎜⎟ ⎝⎠axm11EE[] m+++ ax m 2 []... m 2 ax mn E [] mn ⇒=EX[]AA EX [] Identities For cov(X) – the covariance matrix of X with itself, the following are true: cov(X) is a symmetric nxn matrix with the variance of Xi on the diagonal T cov. ()AXX= AA cov( ) Proof First: Trivial Second: T cov(XEXEXXEX ) =−⎡⎤ − ⎣⎦()[]()[] =−EXX⎡⎤T XEXTT −+ EXX EXEX ⎣⎦[] [] [][] =−EXX⎡⎤T EXEX⎡⎤TT − EEXX⎡⎤ + EEXEX ⎡ ⎤ ⎣⎦⎣⎦[]⎣⎦ [] ⎣ [][] ⎦ T cov(YXEXEXXEX )==− cov(AAAAA ) ⎡⎤ − ⎣⎦()[]()[] =−E⎡⎤AAA XXTT XEXTT AA T −+ EXX AA T EXEX A T ⎣⎦[] [] [][] =−AAAAAAAEXX⎡⎤TT EXEX⎡⎤TT T − EEXX⎡⎤ T + EEXEX ⎡ ⎤ AT ⎣⎦ ⎣⎦[]⎣⎦ [] ⎣ [][]⎦ = AAcov()X T Estimation: Let N be the number of observations for the ith random variable. Then X = ( XX1,,K n ) 1 N pxxxxij=−−∑() ik i() jk j N −1 k =1 Example Stocks 1 Year log-daily price ratio of Microsoft, Google, and Yahoo > price<-read.csv("1yrlogprice.csv",header=T) > price[1,] MSFT APPL GOOG YHOO 1 0.001884144 -0.01971508 0.01284900 0.007799784 > cov(price) MSFT APPL GOOG YHOO MSFT 1.315902e-04 0.0001022785 0.0001040492 5.402314e-05 APPL 1.022785e-04 0.0002327443 0.0001420152 9.584520e-05 GOOG 1.040492e-04 0.0001420152 0.0001880265 5.842570e-05 YHOO 5.402314e-05 0.0000958452 0.0000584257 3.278960e-04 Data Explained 4 stocks => matrix is 4x4 Symmetric cov(APPL,MSFT)=cov(MSFT,APPL) Largest covariance is between Google and Apple Multivariate Normal Distribution X is an n dimensional vector X is said to have a multivariate normal distribution (with mean μ and covariance Σ) if every linear combination of its components are normally distributed. X ~,N ()μ Σ TTT XX~,NaNaaa()μμΣ⇔ ~() , Σ Multivariate Normal Cont. μ is a n x 1 vector, E[x]=μ Σ is a n x n matrix, Σ=cov(X) If Σ is non-singular, the density is given by: 11⎛⎞T fx()=−−Σ−n/2 1/2 exp⎜⎟()() xμ xμ ()2π Σ ⎝⎠2 If Ais non− random T ANAAAX ~,()μ Σ Linear Combination MVN: Consider Z=X+Y, X and Y ~ bivariate normal The density is given by a convolution: ∞∞ 22 1 −+1/2 xy22−−+−1/2 ()()xu yv f zeedudv= ()( ) Z () 2 ∫∫ ()2π −∞ −∞ 1 −+1/2 xy22 = e () 2π Examples Bivariate Normal Distribution ⎛⎞10 Σ=⎜⎟ ⎝⎠01 Examples Cont. Bivariate Normal (w/ non zero covariance) ⎛⎞1.5 Σ=⎜⎟ ⎝⎠.5 1 Marginal Distributions ⎛⎞()1 X ()12() XX==⎜⎟,,,,,,()X11XXXp X =()pn+ ⎜⎟()2 KK ⎝⎠X ⎛⎞()1 μ ⎛⎞ΣΣ11 12 ()11 () μμ=Σ=⇒⎜⎟,~,⎜⎟X N Σ11 ⎜⎟()2 ΣΣ () ⎝⎠μ ⎝⎠21 22 The marginal distribution of any subset of coordinates is multivariate normal Marginal Distributions Cont. 2 The conditional distribution of X ( ) given X ()1 is normal X()12 and X ( ) are independent iff they are uncorrelated, i.e. Σ12 = 0 References: Emmanuel Candes http://www.acm.caltech.edu/~emmanuel/stat/ Handouts/covariance.pdf.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    18 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us