Chapter 16: Fourier Series

Chapter 16: Fourier Series

Chapter 16: Fourier Series 16.1 Fourier Series Analysis: An Overview A periodic function can be represented by an infinite sum of sine and cosine functions that are harmonically related: Ϧ ͚ʚͨʛ Ɣ ͕1 ƍ ȕ ͕) cos ͢!*ͨ ƍ ͖) sin ͢!*ͨ Fourier Coefficients: are)Ͱͥ calculated from ͕1; ͕); ͖) ͚ʚͨʛ Fundamental Frequency: ͦ_ where multiples of this frequency are called !* Ɣ ; ͢! * harmonic frequencies Conditions that ensure that f(t) can be expressed as a convergent Fourier series: (Dirichlet’s conditions) 1. f(t) be single-values 2. f(t) have a finite number of discontinuities in the periodic interval 3. f(t) have a finite number of maxima and minima in the periodic interval 4. the integral /tͮ exists Ȅ/ |͚ʚͨʛ|ͨ͘; t These are sufficient conditions not necessary conditions; therefore if these conditions exist the functions can be expressed as a Fourier series. However if the conditions are not met the function may still be expressible as a Fourier series. 16.2 The Fourier Coefficients Defining the Fourier coefficients: /tͮ 1 ͕1 Ɣ ǹ ͚ʚͨʛͨ͘ ͎ /t /tͮ 2 ͕& Ɣ ǹ ͚ʚͨʛ cos ͟!*ͨ ͨ͘ ͎ /t /tͮ 2 ͖& Ɣ ǹ ͚ʚͨʛ sin ͟!*ͨ ͨ͘ ͎ / t Example 16.1 Find the Fourier series for the periodic waveform shown. Assessment problems 16.1 & 16.2 ECEN 2633 Spring 2011 Page 1 of 5 16.3 The Effects of Symmetry on the Fourier Coefficients Four types of symmetry used to simplify Fourier analysis 1. Even-function symmetry 2. Odd-function symmetry 3. Half-wave symmetry 4. Quarter-wave symmetry Even-function symmetry ͚ʚͨʛ Ɣ ͚ʚƎͨʛ Simplified equations: ͦ 2 ͕1 Ɣ ǹ ͚ʚͨʛͨ͘ ͎ ͤ ͦ 4 ͕& Ɣ ǹ ͚ʚͨʛ cos ͟!*ͨ ͨ͘ ͕͘͢ ͖& Ɣ 0; ͚ͣͦ ͕͠͠ ͟ ͎ ͤ Odd-function symmetry ͚ʚͨʛ Ɣ Ǝ͚ʚƎͨʛ Simplified equations: ͦ 4 ͖& Ɣ ǹ ͚ʚͨʛ sin ͟!*ͨ ͨ͘ ͎ /t ͕1 Ɣ 0 ͕͘͢ ͕& Ɣ 0 ͚ͣͦ ͕͠͠ ͟ Half-wave symmetry If the function is shifted one half period and inverted and look identical to the original then it is half-wave symmetric ͎ ͚ʚͨʛ Ɣ Ǝ͚ ƴͨ Ǝ Ƹ; A half-wave symmetric function can2 be even, odd or neither. Simplified Equations: ͕1 Ɣ 0; ͕& Ɣ 0 ͕͘͢ ͖& Ɣ 0 ͚ͣͦ ͙͙ͪ͢ ͟ ͦ 4 ͕& Ɣ ǹ ͚ʚͨʛ cos ͟!*ͨ ͨ͘ ͚ͣͦ ͣ͘͘ ͟ ͎ ͤ ͦ 4 ͖& Ɣ ǹ ͚ʚͨʛ sin ͟!*ͨ ͨ͘ ͚ͣͦ ͣ͘͘ ͟ ͎ / t ECEN 2633 Spring 2011 Page 2 of 5 Quarter-wave symmetry An expression that has both half-wave symmetry and even or odd symmetry Half-wave & Even symmetry ͨ 8 ͕& Ɣ ǹ ͚ʚͨʛ cos ͟!*ͨ ͨ͘ ͚ͣͦ ͣ͘͘ ͟ ͎ Allͤ other values are zero Half-wave & Odd symmetry ͨ 8 ͖& Ɣ ǹ ͚ʚͨʛ sin ͟!*ͨ ͨ͘ ͚ͣͦ ͣ͘͘ ͟ ͎ / Allt other values are zero Example 16.2 Assessment Problem 16.3 16.4 An Alternative Trigonometric Form of the Fourier Series Ϧ ͚ʚͨʛ Ɣ ͕1 ƍ ȕ ̻) cos ʚ͢!*ͨ Ǝ )ʛ )Ͱͥ Where A n and θ n are a complex quantity ͦ ͦ ͕) Ǝ ͖͞) Ɣ ǭ͕) ƍ ͖)ǹ) Ɣ ̻)ǹ Ǝ ) Example 16.3 Assessment Problem 16.4 16.5 Not Covered 16.6 Not Covered 16.7 Not Covered ECEN 2633 Spring 2011 Page 3 of 5 16.8 The Exponential Form of the Fourier Series Ϧ %)ht/ ͚ʚͨʛ Ɣ ȕ ̽)͙ Where )ͰͯϦ /tͮ 1 ͯ%)ht/ ̽) Ɣ ǹ ͚ʚͨʛ͙ ͨ͘ ͎ / Recalling t %)ht/ ͯ%)ht/ %)ht/ ͯ%)ht/ ͙ ƍ ͙ ͙ Ǝ ͙ cos ͢!ͤͨ Ɣ ͕͘͢ sin ͢!ͤͨ Ɣ 2 2͞ Euler’s formula ͙%3 Ɣ cosͬ ƍ ͞sinͬ ͕͘͢ ͙ͯ%3 Ɣ cosͬƎ͞sinͬ Defining C n ͕) Ǝ ͖͞) ̻) ̽) Ɣ Ɣ ǹ Ǝ ) ͚ͣͦ ͢ Ɣ 1,2,3,ˆ 2 2 /tͮ 1 ̽ͤ Ɣ ǹ ͚ʚͨʛͨ͘ Ɣ ͕1 ͎ / Example 16.6 t Assessment Problem 16.8 16.9 Amplitude and Phase Spectra Amplitude spectrum: the plot of the amplitude of each term of the Fourier series of f(t) versus frequency Phase spectrum: the plot of the phase angle of each term versus frequency Line Spectra: plots above; since they occur at discrete values of the frequency Illustration of Amplitude and Phase Spectra Referring to example 16.6 ͢!ͤ ͐( sin ʠ 2 ʡ ̽) Ɣ ͎ ͢!ͤ 2 Given and ͐( Ɣ 5͐ Ɣ ͩ ͢ sin ʠ ʡ 5 ̽) Ɣ 1 ͢ 5 ECEN 2633 Spring 2011 Page 4 of 5 Since the function is even: b k=0, c ͦ ͦ 4 4͐( 10 ͟ ͕) Ɣ ǹ ͚ʚͨʛ cos ͟!*ͨ ͨ͘ Ɣ ǹ cos ͟!*ͨ ͨ͘ Ɣ sin ͎ ͎ ͟ 5 ͤ ͤ Effects of shifting f(t) on the time axis Amplitude experiences no change ͯ%)ht/t |̽)| Ɣ ɳ̽)͙ ɳ Phase is affected ɑ ͢ ) Ɣ Ǝ ʠ) ƍ ʡ 5 ECEN 2633 Spring 2011 Page 5 of 5 .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    5 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us