The Proton Radius Puzzle Μ

The Proton Radius Puzzle Μ

The proton radius puzzle µ A. Antognini Paul Scherrer Institute ETH, Zurich Switzerland CREMA collaboration Laser spectroscopy of muonic atoms µ 2P 2S-2P Laser excitation Energy 2S 1S μ • 2S-2P p From 2S-2P • 2S-2P μd ꔄ charge radii • 2S-2P μ3He, μ4He Aldo Antognini Rencontres de Moriond 19.03.2017 2 Three ways to the proton radius p p e- H 2 e- µ- e--p scattering H spectroscopy µp spectroscopy 6.7 σ CODATA-2010 µp 2013 scatt. JLab µp 2010 scatt. Mainz H spectroscopy 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 Proton charge radius [fm] Pohl et al., Nature 466, 213 (2010) Antognini et al., Science 339, 417 (2013) Pohl et al., Science 353, 669 (2016) Aldo Antognini Rencontres de Moriond 19.03.2017 3 Extracting the proton radius from 훍p Measure 2S-2P splitting (20 ppm) 8.4 meV 2P F=2 and compare with theory 3/2 F=1 2P1/2 F=1 → proton radius F=0 ∆Eth . − . r2 . 2P −2S = 206 0336(15) 5 2275(10) p +00332(20) [meV] 206 meV 50 THz 6 µm fin. size: 3.8 meV F=1 2π(Zα) 2 2 2S ∆Esize = r |Ψnl(0)| 1/2 m ≈ 200m 3 p 23 meV µ e 4 2(Zα) 3 2 F=0 3 m r δl = 3n r p 0 Aldo Antognini Rencontres de Moriond 19.03.2017 4 Principle of the µp 2S-2P experiment Produce many µ− at keV energy − Form µp by stopping µ in 1 mbar H2 gas Fire laser to induce the 2S-2P transition Measure the 2 keV X-rays from 2P-1S decay µp formation Laser excitation Plot number of X-rays vs laser frequency ] n~14 2 P -4 7 Laser 6 1 % 99 % 2 S 5 2 P 4 2 S 3 2 keV 2 keV γ γ 2 delayed / prompt events [10 1 0 1 S 49.75 49.8 49.85 49.9 49.95 1 S laser frequency [THz] Aldo Antognini Rencontres de Moriond 19.03.2017 5 The setup at the Paul Scherrer Institute Aldo Antognini Rencontres de Moriond 19.03.2017 6 The first 훍p resonance (2010) Discrepancy: 5.0 σ ↔ 75 GHz ↔ δν/ν =1.5 × 10−3 ] -4 7 CODATA-06 our value 6 e-p scattering H2O 5 calib. 4 Systematics: 300 MHz Statistics: 700 MHz delayed / prompt events [10 3 2 1 0 49.75 49.8 49.85 49.9 49.95 laser frequency [THz] Pohl et al., Nature 466, 213 (2010) Aldo Antognini Rencontres de Moriond 19.03.2017 7 Politically in-correct discussion Everybody seems to be right!..? Aldo Antognini Rencontres de Moriond 19.03.2017 8 Is the 훍p experiment wrong? This is what I mean with politically incorrect Aldo Antognini Rencontres de Moriond 19.03.2017 9 Why is the 훍p theory reliable? ∆Eth . − . r2 . 2P −2S = 206 0336(15) 5 2275(10) p +00332(20) [meV] 1-loop eVP proton size 2-loop eVP µSE and µVP discrepancy 1-loop eVP in 2 Coul. recoil 2-photon exchange hadronic VP proton SE Discrepancy: 0.31 meV 3-loop eVP Th. uncert.: 0.0025 meV light-by-light -3 -2 -1 2 10 10 10 1 10 10 meV Pachucki, Borie, Eides, Karschenboim, Jentschura, Martynenko, Indelicato Pineda… Aldo Antognini Rencontres de Moriond 19.03.2017 10 Why is the 훍p theory reliable? ∆Eth . − . r2 . 2P −2S = 206 0336(15) 5 2275(10) p +00332(20) [meV] 1-loop eVP proton size 2-loop eVP µSE and µVP discrepancy 1-loop eVP in 2 Coul. recoil 2-photon exchange hadronic VP proton SE Discrepancy: 0.31 meV 3-loop eVP Th. uncert.: 0.0025 meV light-by-light -3 -2 -1 2 10 10 10 1 10 10 meV Pachucki, Borie, Eides, Karschenboim, Jentschura, Martynenko, Indelicato Pineda… Aldo Antognini Rencontres de Moriond 19.03.2017 11 Why is the 훍p theory reliable? ∆Eth . − . r2 . 2P −2S = 206 0336(15) 5 2275(10) p +00332(20) [meV] 1-loop eVP proton size 2-loop eVP µSE and µVP discrepancy 1-loop eVP in 2 Coul. recoil 2-photon exchange hadronic VP proton SE Discrepancy: 0.31 meV 3-loop eVP Th. uncert.: 0.0025 meV light-by-light -3 -2 -1 2 10 10 10 1 10 10 meV Pachucki, Borie, Eides, Karschenboim, Jentschura, Martynenko, Indelicato Pineda… Aldo Antognini Rencontres de Moriond 19.03.2017 12 Why is the 훍p theory reliable? ∆Eth . − . r2 . 2P −2S = 206 0336(15) 5 2275(10) p +00332(20) [meV] 1-loop eVP proton size 2-loop eVP µSE and µVP discrepancy 1-loop eVP in 2 Coul. recoil 2-photon exchange hadronic VP Pachucki, Carlson, Birse, McGovern, Pineda, proton SE Discrepancy: 0.31 meV Theory uncert.: 0.0025 meV Gorchtein, Pascalutsa, 3-loop eVP Vanderhaeghen, Alarcon, light-by-light Miller, Paz, Hill… -3 -2 -1 2 10 10 10 1 10 10 meV Pachucki, Borie, Eides, Hill, Paz, arXiv:1611.09917 Karschenboim, Jentschura, Birse, McGovern, arXiv1206.3030 Martynenko, Indelicato Hagelstein et al., arXiv:1512.03765 Pineda… Peset and Pineda, arXiv:1406.4524 Aldo Antognini Rencontres de Moriond 19.03.2017 13 Is the 2휸 exchange in 훍p reliable? Phenomenological: - dispersion relations - data - subtraction term Chiral EFT AGREEMENT OF TWO METHODS Subtraction term=-0.004 (1) meV Discrepancy=0.3 meV Aldo Antognini Rencontres de Moriond 19.03.2017 14 How reliable is e-p scattering? dσ dσ 1 2 2 2 2 = εGE(Q ) + τGM (Q ) ⇣dΩ⌘Ros. ⇣dΩ⌘Mott (1 + τ)⇣ ⌘ 2 dGE Q 2 ~2 ( ) hrpi = −6 dQ2 Q2=0 Extrapolation: - which function? - physical model? - constraining large-r? - which Q2 range? - sensitivity? 2 4 2 Q 2 Q 4 GE(Q )=1+ 6 hrpi + 120 hrpi + ... Aldo Antognini Rencontres de Moriond 19.03.2017 15 The proton charge radii 6.7 σ CODATA-2010 µp 2013 scatt. JLab µp 2010 scatt. Mainz H spectroscopy 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 Proton charge radius [fm] Aldo Antognini Rencontres de Moriond 19.03.2017 16 The proton charge radii Bernauer, Distler, arXiv:1606.02159 Various e-p scattering analysis in Sick, Trautmann, arXiv:1701.01809 agreement with muonic results Horbatsch, Hessels, Pineda, arXiv:1610.09760 Lee, Arrington, Hill, arXiv:1505.01489 BUT these analysis are opposed by the experts of the field. ꔄ Discrepancy still persists H(2S-4P) 2016 ?? µd, 2016 Horbatsch, 2016 Higinbotham, 2015 Hessels, 2015 Griffionen, 2015 Sick, 2015 Lee, 2015 µp 2013 dispersion 2012 e-p, JLab, 2011 CODATA-2010 µp 2010 e-p, Mainz, 2010 dispersion 2007 H/D 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 Proton charge radius [fm] Aldo Antognini Rencontres de Moriond 19.03.2017 17 How accurate is hydrogen spectroscopy? R∞ L Lth (r ) = 8171.636(4) + 1.5645 r2 MHz E ' + 1S 1S p p nS n2 n3 8S 4S 3S 3D 2S - 2P 2S-4P 2S-8D 1/2 1/2 2S1/2 - 2P1/2 2S - 2P 2S 2P 1/2 3/2 1S-2S + 2S- 4S1/2 1S-2S + 2S- 4D5/2 1S-2S + 2S- 4P1/2 1S-2S + 2S- 4P3/2 1S-2S + 2S- 6S1/2 1S-2S + 2S- 6D5/2 1S-2S + 2S- 8S 1S-2S 1/2 1S-2S + 2S- 8D3/2 1S-2S + 2S- 8D5/2 H = 0.8779 +- 0.0094 fm 1S-2S + 2S-12D3/2 avg µp : 0.84087 +- 0.00039 fm 1S-2S + 2S-12D5/2 1S-2S + 1S - 3S1/2 0.8 0.85 0.9 0.95 1 1S 4휎 only when averaging proton charge radius (fm) Aldo Antognini Rencontres de Moriond 19.03.2017 18 How accurate is hydrogen spectroscopy? Beyer, Ann. d. Phys. 525, 671 (2013) µp H Low sensitivity to Rp Large sensitivity to Rp ꔄ high-precision frontier ꔄ circumvent high-precision issues fight with systematics But difficult to see the signal ꔄ But “easy” to see the signal Explain the discrepancy by shifting the µp (2S-2P) 100 σ 75 GHz 4 Γ H (1S-2S) 4’000 σ 40 kHz 40 Γ σ · −4 Γ H (2S-4P) < 1.5 9 kHz 7 10 σ σ · −4 Γ : exp accuracy H (2S-2P) < 1.5 5 kHz 7 10 Γ : line width Aldo Antognini Rencontres de Moriond 19.03.2017 19 Is there room for BSM physics? ��� �����+ - �� ���� � � � →γ �����+ - -� - � �� ��� + � �� � μ →μ <� � / -�) ���� � (� μ σ (� ) < �% �� - →μνϕ ���� ������� �� � � � ℓ ����� ����� ξ ϵ ) �� ����� - μ→ �� � ������ ��� �� ( ��� � ����� ����� μ μ ����� �� � � (±� ) ) � ��� ���� � σ ���� -� ����� �� ( ����� ± ) ���� � - ) ( � ) (� � � (±� ��� σ ���� μ �� ��� σ ���� ��� � �� ��-� �� (���) ��� + - �� �����+ - �� ���� � � � →μ μ � �� �� �� �� �� � (���) →γ �����+ - -� � - � �� ϕ ��� + � �� τ � μ →μ ) <� ����/� (�-� σ μ � �� → - ���� ������� �� � � � ℓ X ����� ��� ξ ϵ �� ����� - μ→ �� � ��� ����� �� ����� + � �+ + - → ℓ ℓ = - ���� ��� ��� �� � ���� ��β����± =��� ��� = ± σ α ��� ��� ��� Some open regions best fit 2 ( X ) ���� ��� � �� ( ) �� ��� for MeV force carrier mX(MeV) still resist Aldo Antognini Rencontres de Moriond 19.03.2017 20 Is there room for BSM or unconventional physics? • Breakdown of Lorentz invariance? Gomes, Kostelecky, & Vargas (2014) • Unanticipated QCD corrections? G. Miller, (2013) • Breakdown of Lamb shift expansion due to non-smooth form factor Pascalutsa (2015) • Light sea fermions in e-p and µ-p interactions. Jentschura, G. Miller • Beyond perturbative QED: strong field physics. Pachucki, Jentschura (2014) • Higher-dimensional gravity(?) Dahia & Lemos (2015) • Renormalization group effects for effective particles. Glazek (2014) • Point-particle effective theories, Burgess, Haymann, Rummel, Zalavari (2017) • BSM coupling to muons and protons. Small or no coupling to other particles. • Tuning (e.g. vector vs axial-vector) New point-particle EFT • Targeted coupling (additional coupling to µ and p) predicts R(µp) < R(H), R(scatt.) • No UV completion and no full SM gauge invariance arXiv:1612.07334, arXiv:1612.07313 BSM pessimistic: Barger, Chiang, Keung, Marfatia (2011, 2012), Karshenboim, McKeen, Pospelov (2014) BSM optimistic: Tucker-Smith & Yavin (2011), Batell, McKeen & Pospelov (2011), Brax & Burrage (2011) Rislow & Carlson (2012, 2014), Marfatia & Keung (2015), Pauk& Vanderhaeghen (2015) Martens & Ralston (2016), Liu, McKeen & Miller (2016), Batell et.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    34 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us