View This Volume's Front and Back Matter

View This Volume's Front and Back Matter

Computational Complexity Theory This page intentionally left blank https://doi.org/10.1090//pcms/010 IAS/PARK CIT Y MATHEMATICS SERIES Volume 1 0 Computational Complexity Theory Steven Rudic h Avi Wigderson Editors American Mathematical Societ y Institute for Advanced Stud y IAS/Park Cit y Mathematics Institute runs mathematics educatio n programs that brin g together hig h schoo l mathematic s teachers , researcher s i n mathematic s an d mathematic s education, undergraduat e mathematic s faculty , graduat e students , an d undergraduate s t o participate i n distinc t bu t overlappin g program s o f researc h an d education . Thi s volum e contains th e lectur e note s fro m th e Graduat e Summe r Schoo l progra m o n Computationa l Complexity Theor y hel d i n Princeto n i n the summe r o f 2000 . 2000 Mathematics Subject Classification. Primar y 68Qxx ; Secondar y 03D15 . Library o f Congress Cataloging-in-Publicatio n Dat a Computational complexit y theor y / Steve n Rudich , Av i Wigderson, editors , p. cm . — (IAS/Park Cit y mathematic s series , ISS N 1079-563 4 ; v. 10) "Volume contain s the lecture note s fro m th e Graduate Summe r Schoo l progra m o n Computa - tional Complexit y Theor y hel d i n Princeton i n the summer o f 2000"—T.p. verso . Includes bibliographica l references . ISBN 0-8218-2872- X (hardcove r : acid-fre e paper ) 1. Computational complexity . I . Rudich, Steven . II . Wigderson, Avi . III . Series. QA267.7.C685 200 4 511.3'52—dc22 2004049026 Copying an d reprinting. Materia l i n this boo k ma y be reproduced b y any means fo r edu - cational an d scientific purpose s withou t fe e or permission wit h th e exception o f reproduction b y services that collec t fee s fo r delivery o f documents an d provided tha t th e customary acknowledg - ment o f the source i s given. Thi s consen t doe s no t extend t o other kind s o f copying fo r genera l distribution, fo r advertising o r promotional purposes , o r fo r resale. Request s fo r permission fo r commercial us e of material shoul d b e addressed to the Acquisitions Department, America n Math - ematical Society , 20 1 Charles Street , Providence , Rhod e Islan d 02904-2294 , USA . Requests can also be made b y e-mail to [email protected] . Excluded fro m thes e provision s i s material i n articles fo r which the author hold s copyright. I n such cases , requests fo r permission to use or reprint shoul d b e addressed directl y to the author(s). (Copyright ownershi p i s indicated i n the notice i n the lower right-han d corne r o f the first pag e of each article. ) © 200 4 by the American Mathematica l Society . Al l rights reserved . The America n Mathematica l Societ y retain s al l rights except thos e grante d t o the United State s Government . Printed i n the United State s o f America. @ Th e paper use d i n this boo k i s acid-free an d falls withi n th e guidelines established t o ensure permanenc e an d durability. Visit th e AMS home pag e at http://www.ams.org / 10 9 8 7 6 5 4 3 2 1 0 9 08 07 06 05 0 4 Contents Preface xii i Introduction 1 Week One : COMPLEXITY THEORY : FRO M GODE L T O FEYNMA N 3 Steven Rudich , Complexit y Theory : Fro m Gode l t o Feynma n 5 Lecture 1 . History an d Basi c Concept s 7 1.1. Histor y 7 1.2. Th e Turin g Machin e 8 1.3. Som e Basic Definition s 11 1.4. Th e Church-Turin g Thesi s 12 1.5. Computationa l Resource s 12 1.6. Godel' s Lette r 13 1.7. Th e Moder n Da y Versio n o f P = N P 13 1.8. Appendi x 17 Lecture 2 . Resources, Reduction s an d P vs . N P 19 2.1. Tim e an d Spac e 19 2.2. Polynomia l Tim e 19 2.3. Non-Deterministi c Turin g Machine s 20 2.4. Consequence s o f P = N P 22 2.5. Reducibilit y 23 2.6. Completenes s 24 2.7. Cook-Levi n Theore m 25 2.8. Othe r NP-complet e Problem s 27 2.9. Wha t Gode l Misse d 27 Lecture 3 . Probabilistic an d Quantu m Computatio n 29 3.1. Schwartz-Zippe l Theore m 29 3.2. Verifyin g Arithmeti c 30 3.3. Probabilisti c Complexit y Classe s 30 3.4. Quantu m Computatio n 32 3.5. Conclusio n 33 V vi CONTENT S Lecture 4 . Complexity Classe s 3 5 4.1. Simulatio n 3 5 4.2. Hierarch y Theorem s 3 7 4.3. Ladner' s Theore m 3 8 4.4. Relativizatio n 3 9 4.5. Relation s Betwee n Som e Complexit y Classe s 4 0 4.6. Co-classe s 4 1 Lecture 5 . Space Complexit y an d Circui t Complexit y 4 5 5.1. Savitch' s Theore m 4 5 5.2. Th e Immerman-Szelepcseny i Theore m 4 6 5.3. PSPACE-Completenes s 4 8 5.4. Boolea n Circuit s 4 9 5.5. Circui t Complexit y Classe s 5 1 5.6. Non-Unifor m Circuit s an d Advic e Turing Machine s 5 2 Lecture 6 . Oracle s an d the Polynomia l Tim e Hierarch y 5 5 6.1. Complexit y Classe s Relativ e to a n Oracl e 5 5 6.2. Polynomia l Hierarch y 5 6 6.3. Placin g BPP i n the Worl d Pictur e 6 0 6.4. Karp-Lipto n Theore m 6 2 Lecture 7 . Circuit Lowe r Bound s 6 5 7.1. Circui t Complexit y an d Lo w Degree Polynomials 6 5 7.2. Approximatio n Metho d 6 6 Lecture 8 . "Natural " Proof s o f Lowe r Bound s 7 5 8.1. Ho w to Reaso n Tha t a Problem i s Hard 7 5 8.2. A n Ol d "Stumblin g Block" : Relativizatio n 7 5 8.3. A New Direction: Non-Unifor m Lowe r Bound s 7 6 8.4. A New "Stumblin g Block" : Natura l Proof s 7 6 8.5. Natura l Proof s o f Lowe r Bound s fo r AC o 7 7 8.6. Generalizin g Ou r Definition s 7 9 8.7. "Naturalizing " Smolensky' s Proo f 7 9 8.8. What' s "Bad " Abou t a Natural Proof ? 8 1 8.9. Wh y D o Natural Proof s Arise ? 8 3 8.10. Unnatura l Circui t Lowe r Bound s 8 3 8.11. Th e Bi g Picture 8 3 Bibliography 8 5 Avi Wigderson , Averag e Cas e Complexit y 8 9 Lecture 1 . Average Cas e Complexit y 9 1 1.1. Introductio n 9 1 1.2. Levin' s Theory o f Average-Case Complexit y 9 1 1.3. A "Generic " Dist-NP Complet e Problem 9 4 1.4. Convertin g Worst-Cas e Hardnes s int o Average-Cas e Hardnes s 9 5 1.5. Fiv e Possible World s 9 6 Bibliography 99 CONTENTS vi i Sanjeev Arora , Explorin g Complexit y throug h Reduction s 10 1 Introduction 10 3 Lecture 1 . PCP Theore m an d Hardnes s o f Computing Approximat e Solution s 10 5 1. Approximatio n Algorithm s 10 5 2. Probabilisticall y Checkabl e Proof s 10 6 3. Hastad' s PC P an d Inapproximabilit y o f MAX-3SAT 10 8 4. Inapproximabilit y o f MAX-3SAT(13) 10 8 5. Inapproximabilit y o f MAX-INDEP-SET 10 9 6. Inapproximabilit y o f Other Problem s 11 0 7. Histor y 11 1 Lecture 2 . Which Problem s Hav e Strongly Exponentia l Complexity ? 11 3 1. SERF-Reduction s 11 3 2. Th e Mai n Theore m 11 4 Lecture 3 . Toda's Theorem : PH C P* p 11 9 1. Classe s #P an d 0P 11 9 2. Th e Mai n Lemm a 12 1 3. Proo f o f Theorem 2 1 12 2 4. Ope n Problem s 12 3 Bibliography 12 5 Ran Raz , Quantu m Computatio n 12 7 Lecture 1 . Introduction 12 9 1.1. Classica l Deterministi c Machine s 13 0 1.2. Classica l Probabilisti c Machine s 13 1 1.3. Quantu m System s 13 2 1.4. Dirac' s Ke t Notatio n 13 3 1.5. Quantu m Measuremen t 13 4 1.6. Transitio n Matri x an d Interferenc e 13 4 1.7. Measuremen t Accordin g to a Differen t Bas e 13 5 1.8. Th e Polarizer s Experimen t 13 6 1.9. Historica l Backgroun d 13 7 Lecture 2 . Bipartite Quantu m System s 13 9 2.1.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    18 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us