Einstein's Physics

Einstein's Physics

Einstein’s Physics Atoms, Quanta, and Relativity Derived, explained, and appraised Ta-Pei Cheng University of Missouri - St. Louis Portland State University To be published by Oxford University Press 2013 Contents I ATOMIC NATURE OF MATTER 1 1 Molecular size from classical fluid 3 1.1 Two relations of molecular size and the Avogadro number . 4 1.2 The relation for the effective viscosity . 6 1.2.1 The equation of motion for a viscous fluid . 7 1.2.2 Viscosity and heat loss in a fluid . 8 1.2.3 Volume fraction in terms of molecular dimensions . 11 1.3 The relation for the diffusion coefficient . 11 1.3.1 Osmoticforce....................... 12 1.3.2 Frictional drag force — the Stokes law . 13 1.4 SuppMat: Basics of fluid mechanics . 15 1.4.1 The equation of continuity . 15 1.4.2 The Euler equation for an ideal fluid . 16 1.5 SuppMat: Calculating the effective viscosity . 18 1.5.1 The induced velocity field v′ ............... 18 1.5.2 The induced pressure field p′ .............. 20 1.5.3 Heat dissipation in a fluid with suspended particles . 20 1.6 SuppMat: The Stokes formula for viscous force . 24 2 The Brownian motion 27 2.1 Diffusion and Brownian motion . 29 2.1.1 Einstein’s statistical derivation of the diffusion equation 29 2.1.2 The solution of the diffusion equation and the mean- squaredisplacement . 32 2.2 Fluctuations of a particle system . 32 2.2.1 Randomwalk....................... 33 2.2.2 Brownian motion as a random walk . 34 2.3 The Einstein-Smoluchowski relation . 34 2.3.1 Fluctuation and dissipation . 36 iii iv CONTENTS 2.3.2 Mean-square displacement and molecular dimensions . 36 2.4 Perrin’s experimental verification . 37 II QUANTUM THEORY 41 3 Blackbody radiation: From Kirchhoff to Planck 43 3.1 Radiation as a collection of oscillators . 45 3.2 Thermodynamics of blackbody radiation . 47 3.2.1 Radiation energy density is an universal function . 47 3.2.2 The Stefan-Boltzmann law . 49 3.2.3 Wien’s displacement law . 50 3.2.4 Planck’s distribution proposed . 54 3.3 Planck’s investigation of cavity oscillator entropy . 54 3.3.1 Relating the oscillator energy to the radiation density 55 3.3.2 The mean entropy of an oscillator . 55 3.4 Planck’s statistical analysis . 57 3.4.1 Calculating the complexion of Planck’s distribution . 57 3.4.2 The Planck’s constant and the Boltzmann’s constant . 61 3.4.3 Planck’s energy quantization proposal — a summary . 62 3.5 SuppMat: Radiation oscillator energy and frequency . 63 3.5.1 Ratio of the oscillator energy and frequency is an adi- abaticinvariant. .. .. .. .. .. .. 64 3.5.2 The thermodynamic derivation of the relation between radiation pressure and energy density . 67 4 Einstein’s proposal of light quanta 69 4.1 TheRayleigh-Jeanslaw . 71 4.1.1 Einstein’s derivation of the Rayleigh-Jeans law . 71 4.1.2 The history of the Rayleigh-Jeans law and "Planck’s fortunatefailure". 73 4.1.3 An excursion to Rayleigh’s calculation of the density ofwavestates....................... 74 4.2 Radiation entropy and complexion á la Einstein . 76 4.2.1 The entropy and complexion of radiation in the Wien limit............................ 77 4.2.2 The entropy and complexion of an ideal gas . 79 4.2.3 Radiation as a gas of light quanta . 80 4.2.4 Photons as quanta of radiation . 81 4.3 Thephotoelectriceffect . 81 CONTENTS v 4.4 SuppMat: The equipartition theorem . 83 5 Quantum theory of specific heat 85 5.1 The quantum postulate: Einstein vs. Planck.......... 86 5.1.1 Einstein’s derivation of Planck’s distribution . 87 5.2 Specific heat and the equipartition theorem . 88 5.2.1 The study of heat capacity in the pre-quantum era . 88 5.2.2 Einstein’s quantum insight . 90 5.3 TheEinsteinsolid ........................ 91 5.4 TheDebyesolidandphonons . 94 6 Waves, particles, and quantum jumps 99 6.1 Wave-particleduality. 101 6.1.1 Fluctuation theory (Einstein 1904) . 101 6.1.2 Energy fluctuation of radiation (Einstein 1909a) . 102 6.2 Bohr’satom............................105 6.2.1 Spectroscopy: Balmer and Rydberg . 106 6.2.2 Atomic structure: Thomson and Rutherford . 107 6.2.3 Bohr’s quantum model and the hydrogen spectrum . 107 6.3 Einstein’s A and B coefficients . 111 6.3.1 Probability introduced in quantum dynamics . 112 6.3.2 Stimulated emission and the idea of laser . 114 6.4 Looking ahead to quantum field theory . 115 6.4.1 Oscillators in matrix mechanics . 116 6.4.2 Quantum jumps: from emission and absorption of ra- diation to creation and annihilation of particles . 119 6.4.3 Resolving the riddle of wave-particle duality in radia- tionfluctuation. 122 6.5 SuppMat: Fluctuations of a wave system . 124 7 Bose-Einstein statistics and condensation 127 7.1 PhotonandtheComptoneffect . 129 7.2 Towards Bose-Einstein statistics . 130 7.2.1 Boltzmann statistics . 131 7.2.2 Bose’s counting of photon states . 133 7.2.3 Einstein’s elaboration of Bose’s counting . 136 7.3 Quantum mechanics and identical particles . 139 7.4 Bose-Einstein condensation . 142 7.4.1 Condensate occupancy calculated . 143 7.4.2 The condensation temperature . 144 vi CONTENTS 7.4.3 Laboratory observation of BE condensation . 146 7.5 SuppMat: Radiation pressure due to photons . 148 7.6 SuppMat: Planck’s analysis and BE statistics . 149 7.7 SuppMat: The role of indistinguishability in BEC . 150 8 Local reality and the Einstein-Bohr debate 153 8.1 QM basics — superposition and probability . 154 8.2 The Copenhagen interpretation . 154 8.3 EPR paradox : entanglement and nonlocality . 156 8.3.1 The post EPR era and Bell’s inequality . 159 8.3.2 Local reality vs. QM — the experimental outcome . 162 8.4 SuppMat: QM calculation of spin correlations . 164 III SPECIAL RELATIVITY 169 9 Prelude to special relativity 171 9.1 Relativity as a coordinate symmetry . 172 9.2 Maxwell’sequations . 174 9.2.1 The electromagnetic wave equation . 175 9.2.2 Aether as the medium for EM wave propagation . 176 9.3 Developments prior to special relativity . 177 9.3.1 Stellar aberration and Fizeau’s experiment . 177 9.3.2 Lorentz’s corresponding states and local time . 180 9.3.3 The Michelson-Morley experiment . 184 9.3.4 Length contraction and the Lorentz transformation . 187 9.3.5 Poincaré and special relativity . 188 9.4 Reconstructing Einstein’s motivation . 188 9.4.1 The magnet and conductor thought experiment . 189 9.4.2 From ‘no absolute time’ to the complete theory in five weeks ...........................191 9.4.3 Influence of prior investigators in physics and philosophy193 9.5 SuppMat: Lorentz transformation à la Lorentz . 194 9.5.1 Noncovariance under Galilean transformation . 195 9.5.2 Lorentz’s local time and noncovariance at O v2/c2 . 196 9.5.3 Maxwell’s equations are Lorentz covariant . 198 10 The new kinematics and E = mc2 201 10.1 Thenewkinematics . 203 10.1.1 Einstein’s two postulates . 203 CONTENTS vii 10.1.2 The new conception of time and the derivation of the Lorentz transformation . 204 10.1.3 Relativity of simultaneity, time dilation and length contraction ........................207 10.2 The new velocity addition rule . 212 10.2.1 The invariant space-time interval . 212 10.2.2 Adding velocities but keeping light speed constant . 212 10.3 Maxwell’s equations are covariant . 213 10.3.1 The Lorentz transformation of electromagnetic fields . 214 10.3.2 The Lorentz transformation of radiation energy . 216 10.4 TheLorentzforcelaw . 216 10.5 The E = mc2 relation ......................217 10.5.1 Work-energy theorem in relativity . 218 10.5.2 The E = mc2 paper three months later . 219 10.6 SuppMat: Relativistic wave motion . 220 10.6.1 The Fresnel formula from velocity addition rule . 220 10.6.2 The Doppler effect and aberration of light . 221 10.6.3 Derivation of the radiation energy transformation . 222 10.7 SuppMat: Relativistic momentum and force . 224 11 Geometric formulation of relativity 225 11.1 Minkowskispacetime. 227 11.1.1 Rotation in 3D space - a review . 227 11.1.2 The Lorentz transformation as a rotation in 4D space- time ............................228 11.2 Tensorsinaflatspacetime. 229 11.2.1 Tensor contraction and the metric . 230 11.2.2 Minkowski spacetime is pseudo-Euclidean . 232 11.2.3 Relativistic velocity, momentum, and energy . 233 11.2.4 The electromagnetic field tensor . 234 11.2.5 The energy-momentum-stress tensor for a field system 235 11.3 The spacetime diagram . 238 11.3.1 Basic features and invariant regions . 239 11.3.2 Lorentz transformation in the spacetime diagram . 241 11.4 The geometric formulation — a summary . 244 IV GENERAL RELATIVITY 245 12 Towards a general theory of relativity 247 viii CONTENTS 12.1 Einstein’s motivations for GR . 248 12.2 Theequivalenceprinciple . 249 12.2.1 The inertia mass vs. the gravitational mass . 249 12.2.2 ‘Myhappiestthought’ . 252 12.3 Implications of the equivalence principle . 253 12.3.1 Bendingofalightray . 254 12.3.2 Gravitational redshift . 255 12.3.3 Gravitational time dilation . 258 12.3.4 Gravity-induced index of refraction in free space . 259 12.3.5 Light ray deflection calculated . 260 12.3.6 From EP to ‘gravity as the structure of spacetime’ . 262 12.4 Elements of Riemannian geometry . 262 12.4.1 Gaussian coordinates and the metric tensor . 263 12.4.2 Geodesic equation . 265 12.4.3 Flatnesstheorem .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    10 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us