BOOLEAN FUNCTIONS Theory, Algorithms, and Applications

BOOLEAN FUNCTIONS Theory, Algorithms, and Applications

www.getmyuni.com BOOLEAN FUNCTIONS Theory, Algorithms, and Applications www.getmyuni.com www.getmyuni.com Contents I FOUNDATIONS 13 1 Fundamental concepts and applications 15 1.1 Boolean functions: definitions and examples . 16 1.2 Boolean expressions . 21 1.3 Duality . 27 1.4 Normal forms . 29 1.5 Transforming an arbitrary expression into a DNF . 34 1.6 Orthogonal DNFs and number of true points . 38 1.7 Implicants and prime implicants . 41 1.8 Restrictions of functions, essential variables . 45 1.9 Geometric interpretation . 49 1.10 Monotone Boolean functions . 51 1.10.1 Definitions and examples . 52 1.10.2 DNFs and prime implicants of positive functions . 54 1.10.3 Minimal true points and maximal false points . 57 1.11 Recognition of functional and DNF properties . 59 1.12 Other representations of Boolean functions . 63 1.12.1 Representations over GF(2) . 63 1.12.2 Representations over the reals . 65 1.12.3 Binary decision diagrams . 66 1.13 Applications . 68 1.13.1 Propositional logic and artificial intelligence . 69 1.13.2 Electrical and computer engineering . 72 1.13.3 Game theory . 75 1.13.4 Reliability theory . 78 1.13.5 Combinatorics . 80 1.13.6 Integer programming . 82 1 www.getmyuni.com 2 CONTENTS 1.14 Exercises . 86 2 Boolean equations 89 2.1 Definitions and applications . 89 2.2 The complexity of Boolean equations: Cook's theorem . 95 2.3 On the role of DNF equations . 97 2.4 What does it mean to \solve a Boolean equation"? . 102 2.5 Branching procedures . 104 2.5.1 Branching rules . 106 2.5.2 Preprocessing . 108 2.6 Variable elimination procedures . 112 2.7 The consensus procedure . 117 2.8 Mathematical programming approaches . 121 2.8.1 Integer linear programming . 122 2.8.2 Nonlinear programming . 127 2.8.3 Local search heuristics . 128 2.9 Recent trends and algorithmic performance . 129 2.10 More on the complexity of Boolean equations . 131 2.10.1 Complexity of equation solving procedures . 131 2.10.2 Random equations . 133 2.10.3 Constraint satisfaction problems and Schaefer's theorem . 135 2.11 Generalizations of consistency testing . 139 2.11.1 Counting the number of solutions . 139 2.11.2 Generating all solutions . 139 2.11.3 Parametric solutions . 141 2.11.4 Maximum satisfiability . 144 2.12 Exercises . 150 3 Prime implicants and minimal DNFs 153 Peter L. Hammer and Alexander Kogan 3.1 Prime implicants . 154 3.1.1 Applications to propositional logic and artificial intelligence . 154 3.1.2 Short prime implicants . 155 3.2 Generation of all prime implicants . 158 3.2.1 Generation from the set of true points . 159 3.2.2 Generation from a DNF representation: The consensus method . 161 3.2.3 Generation from a CNF representation . 172 www.getmyuni.com CONTENTS 3 3.3 Logic minimization . 173 3.3.1 Quine-McCluskey approach: Logic minimization as set covering . 175 3.3.2 Local simplifications of DNFs . 178 3.3.3 Computational complexity of logic minimization . 183 3.3.4 Efficient approximation algorithms for logic minimization . 190 3.4 Extremal and typical parameter values . 194 3.4.1 Number of prime implicants . 194 3.4.2 Extremal parameters of minimal DNFs . 196 3.4.3 Typical parameters of Boolean functions and their DNFs . 197 3.5 Exercises . 200 4 Duality theory 203 Yves Crama and Kazuhisa Makino 4.1 Basic properties and applications . 203 4.1.1 Dual functions and expressions . 203 4.1.2 Normal forms and implicants of dual functions . 205 4.1.3 Dual-comparable functions . 207 4.1.4 Applications . 211 4.2 Duality properties of positive functions . 214 4.2.1 Normal forms and implicants of dual functions . 214 4.2.2 Dual-comparable functions . 215 4.2.3 Applications . 217 4.3 Algorithmic aspects: The general case . 221 4.3.1 Definitions and complexity results . 221 4.3.2 A simple dualization algorithm . 224 4.4 Algorithmic aspects: Positive functions . 228 4.4.1 Some complexity results . 228 4.4.2 A quasi-polynomial dualization algorithm . 231 4.4.3 Additional results . 236 4.5 Exercises . 237 II SPECIAL CLASSES 241 5 Quadratic functions 243 Bruno Simeone 5.1 Basic definitions and properties . 243 5.2 Why are quadratic Boolean functions important? . 245 www.getmyuni.com 4 CONTENTS 5.3 Special classes of quadratic functions . 248 5.3.1 Classes . 248 5.3.2 Functional characterizations . 249 5.4 Quadratic Boolean functions and graphs . 250 5.4.1 Quadratic functions, graphs, digraphs, and bidirected graphs . 250 5.4.2 The matched graph . 251 5.4.3 The implication graph . 253 5.4.4 Conflict codes and quadratic graphs . 258 5.5 Reducibility of combinatorial problems to quadratic equations . 260 5.5.1 Introduction . 260 5.5.2 Bipartiteness . 262 5.5.3 Balance in signed graphs . 262 5.5.4 The K}onig-Egerv´aryproperty for graphs . 263 5.5.5 Recognition of split graphs . 265 5.5.6 Forbidden-color graph bipartition . 265 5.5.7 Recognition of totally unimodular matrices with two nonzero entries per column . 266 5.5.8 Single bend wiring . 268 5.5.9 Max-quadratic functions and VLSI design . 269 5.5.10 A level graph drawing problem . 271 5.5.11 A final look into complexity . 275 5.6 Efficient graph-theoretic algorithms for quadratic equations . 276 5.6.1 Introduction . 276 5.6.2 Labeling algorithm (L) . 277 5.6.3 Alternative Labeling algorithm (AL) . 281 5.6.4 Switching algorithm (S) . 282 5.6.5 Strong components algorithm (SC) . 284 5.6.6 An experimental comparison of algorithms for quadratic equations . 286 5.7 Quadratic equations: Special topics . 288 5.7.1 Parametric solutions . 288 5.7.2 On-line quadratic equations . 295 5.8 Prime implicants, transitive closures, and irredundant forms . 295 5.8.1 Introduction . 295 5.8.2 A transitive closure algorithm for finding all prime implicants . 297 5.8.3 A restricted consensus method and its application to computing the transitive closure of a digraph . 301 5.8.4 Irredundant normal forms and transitive reductions . 310 www.getmyuni.com CONTENTS 5 5.9 Dualization of quadratic functions . 311 5.9.1 Introduction . 311 5.9.2 The dualization algorithm . 312 5.10 Exercises . 315 6 Horn functions 319 Endre Boros 6.1 Basic definitions and properties . 319 6.2 Applications of Horn functions . 323 6.2.1 Propositional rule bases . 323 6.2.2 Functional dependencies in data bases ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    89 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us