Thermodynamics of Biochemical Reaction Networks: Information, Accuracy and Speed

Thermodynamics of Biochemical Reaction Networks: Information, Accuracy and Speed

Thermodynamics of Biochemical Reaction Networks: Information, Accuracy and Speed Massimiliano Esposito BIRS, July 28, 2020 Motivation Thermodynamics of Classical thermodynamics Stochastic thermodynamics Chemical Reaction Networks … 2 "utline I) Deterministic description of O"en CNRs $ First and Second &aw $ Role of Topology $ Role of Information II) Dissipati(e Self-)ssembly III) Stochastic descri"tion and Accuracy IV) Conclusions and ,ers"ectives ! I) Deterministic description of CRNs Environment Chemical Network o"en k'( A + E E* k)( Ae k'# k)2 k)# k'2 o"en k)! 0ass action kinetics E** E + B k'! Be Closed CRN2 #"en CRN2 Stoichiometric matrix (topology Internal Chemosta-ed in autonomous CRNs Chemical Potential &ocal !etailed Balance # Closed CRN relax to e1uili*rium +irst and Second Law total CRN Enthal"y2 CRN Entropy2 concentration Chemical ;ork 1st law Enthalpy Balance :eat %low 2nd law Entropy Balance 3ntropy chan'e in (thermal & chemical reser(oirs Entropy production2 (total entropy change * 5Rao & Es"osito, Phys. Rev. X 6, 067086 (2078 9 .opolo/y: &onser ation Laws & Cycles Environment Chemical Network k'( A + E E* k)( Ae k'# k)2 k)# k'2 k)! E** E + B k'! Be Closed CRN2 #"en CRN2 Conser(ation Laws2 Conser(ation Laws2 Broken conser(ation law= Cycles2 Cycles2 Emergent cycle= 0 > 0 + 0 7 > 1 + 0 2 > 1 + 1 - 5,ole-ini & Es"osito, J. Chem. Phys. 141, 02677< (2076 9 .opolo/y shapes Entropy 3roduction 0 > 0 ? 0 Broken conser(ation laws Emergent cycles 7 > 1 ? 0 2 > 2 ? 0 2 > 1 ? 1 Chemostats C > 3 ? 0 C > 2 ? 1 C > 1 ? 2 Nonconser(ative ;ork Cycle )Ainities Cycle Currents Detailed Balanced CRN !riving ;ork NonEq semigrand @ib*s free energy 1 5Bao & Es"ositoD New J. Phys. 20, 02C00< (2078 9 5%alasco, Bao & Es"osito, Phys. Rev. Lett. 121, 708C07 (2078)] Information and the 5ork Principle 31uilibrium of open CRN ERelative entropy” - 0in work to generate a NonEq distri* - 0a. work that can be extracted from a NonEq distri* 4 5Falasco, Bao & 3s"osito, Phys. Rev. Lett. 121, 108301 (2018 9 … in Reaction)%iffusion 0ass$action kinetics !iAusion: %ickGs &aw !iAusion Reactions Exchange Diffusion coeAicients Spacial structuring takes work2 6 5Falasco, Bao & 3s"osito, Phys. Rev. Lett. 121, 108301 (2018 9 Cost of &hemical Wa es Fisher waves Brusselator 0urray, Mathematical )uchmuty & Nicolis, BullD Biology I. (Springer 2002 MathD BiolD 38, 32J (1I<8 X 1(r,t) X 2(r,t) 0.3 x T — 0 L f L/ 4 L/ 2 3L /4 0.2 @r J r @tf 0.1 23 0.0 20 - 0.1 w—nc T — - 0.2 17 - 0.3 f 1 @r J - 20 - 15 - 10 - 5 0 5 10 15 20 @tf ”r 0 )m"litude - 1 Speed 0 L/4 L/2 3L/4 L (9 r” 5)(anzini, %alasco & Es"osito, J. Chem. Phys. 151, 2C670C (207I 9 &hemical Cloaking and its Cost Pristine concentration gradient of 2 Im"ermeable object distorting the 'radient: Pre(enting the object from distorting the gradient using the CRN2 Chemostats Significant "art of the energy comes from the gradient= (( K)(anzini, %alasco, Es"osito, PRE 101, 080702(R) (2020 II) Dissipati e Self-Assembly fuel waste Boekho en et al :29(9$ Angew. Chem. Int. Ed. 49, #42* Raga;;on <= & 3rins ,= :29(4$ Nature Nanotech. 13, 842 (2 5,enocchio, Bao & Es"osito, Nature Com. 10, C88J (207I 9 3nergy Storage Analy;ing open chemical systems as thermodynamic machines (! 5,enocchio, Bao & Es"osito, Nature Com. 10, 388J (207I 9 !issi"ati(e Synthesis 0a. 0a. linear re/ime (# 5,enocchio, Bao & Es"osito, Nature Com. 10, 388J (207I 9 III) Stochastic formulation ● !ynamics2 Chemical 0aster Equation $ Infinite s"ace of s"ecies a*undances ( ) instead of ( ) ● Thermodynamics2 Stochastic Thermodynamics in Infinite Spaces $ The structure of thermodynamics is exactly the same $ Entropy is now the Shannon entropy of the "roba*ility of s"ecies a*undances $ Entropy production satisfies a fluctuation relation 5Bao & Es"osito, J. Chem. Phys. 149, 26J707 (2078 9 ● %rom stochastic to deterministic description: $ Linear CRN2 full equivalence 5,ole-ini, Wachtel & Es"osito, $ Deficient CRN2 e1uivalence at steady state J. Chem. Phys. 143, 78670C (207J 9 $ In general no e1ui(alence, in "articular in presence of phase transitions 5&aHarescu, Cosse-o, Falasco & Es"osito, J. Chem. Phys. 151, 08677< (207I 9 (* )ccuracy in Dissi"ati(e Self$)ssem*ly Steady-state /long time limit of energy storage) Stochasticity of s"ecies Stochasticity of currents Thermodynamic Mncertainty Relation :igher accuracy away from equilibrium (- 5%alasco, Cosse-o, ,enocchio, & Es"osito, NJP 21, 0<C00J (207I 9 IV) Conclusions and Perspecti es ● +undamental findings: - .opology of a network shapes its thermodynamics - Thermo= and Info= are fundamentally related e en at deterministic le el ● +ramework to asses the cost, accuracy and speed of arious cellular operations: - 2nergy transduction from molecular motors to meta>olism - &ost of cellular information processing and computation ● 3erspectives: - How do energy and information constrain biology at higher le elsB - Keeping track of energetics at higher le els is a major challenge (1 Supplementary Material (4 Thermodynamic Consistent Coarse grainin/ Correct dynamical coarse grainings can give rise to wrong thermodynamics = #ne Emergent cycle #nly if one Two 3.act at steady$state 3, in the "art to coarse-grained (6 5;achtel, Bao & 3s"osito, New J. Phys. 20 042002 (2018 9 Stochastic Dynamics of Open CRNs Internal: population State &hemostaEed: concentrations ,roba*ility reactions Chemical Master Equation Stochastic Reaction Rates &ocal Detailed Balance 0th Law: Closed CN are Detailed$*alanced 29 5Bao & Es"osito, J. Chem. Phys. 149, 26J707 (2078 9 Stochastic Thermodynamics of CRNs Stochastic Trajectory: for gi(en "rotocol Enthal"y: Entropy: reminder Chemical ;ork Entropy %low Enthalpy Balance :eat %low Entropy e.changed with the chemostats Entropy Balance Entropy Entropy change Entropy change in the reser(oirs "roduction 2( 5Bao & Es"osito, J. Chem. Phys. 149, 26J707 (2078 9 Stochastic Thermodynamics I Relative 2ntropy 22 5Bao & Es"osito, J. Chem. Phys. 149, 26J707 (2078 9 Stochastic Thermodynamics II Relative Entropy 2! 5Bao & Es"osito, J. Chem. Phys. 149, 26J707 (2078 9 %etailed Fluctuation Theorem Initial state 2# 5Bao & Es"osito, J. Chem. Phys. 149, 26J707 (2078 9 %eficiency and CompleF)Balanced CRNs !eficiency open 2Fample: nondeficient Com"lex-Balanced CN Com"le.-Balanced Steady State Multi-Poisson SS distribution 2Fample: deficient 2* 5:orn & Jackson, 7I<2], [Feinberg, 7I<2], 5)nderson, Craciun, NurtH, 20709 Thermo of CompleF)Balanced CRNs A era/e Stochastic Entropy Production G %eterministic Entropy Production 2- 5,ole-ini, ;achtel & Es"osito, J. Chem. Phys. 143, 18670C (207J 9 Thermo of &omplex-Balanced CRNs Adiabatic!Nonadiabatic decom"osition of the deterministic entro"y production Adiabatic Nonadiabatic Rela ation Driving &andauer ,rinciple III 21 5Rao & Es"osito, Phys. Rev. X 6, 067086 (2078 9.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    27 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us