
<p>1</p><p>An Intuitive Equivalent Circuit Model for Multilayer van der Waals Heterostructures </p><p>Abhinandan Borah, Punnu Jose Sebastian, Ankur Nipane, and James T. Teherani </p><p>Abstract—Stacks of 2D materials, known as van der Waals </p><p>Layer 1 </p><p>ꢀ</p><p>(vdW) heterostructures, have gained vast attention due to their interesting electrical and optoelectronic properties. This paper presents an intuitive circuit model for the out-of-plane electrostatics of a vdW heterostructure composed of an arbitrary number of layers of 2D semiconductors, graphene, or metal. We explain the mapping between the out-of-plane energy-band diagram and the elements of the equivalent circuit. Though the direct solution of the circuit model for an n-layer structure is not possible due to the variable, nonlinear quantum capacitance of each layer, this work uses the intuition gained from the energy-band picture to provide an efficient solution in terms of a single variable. Our method employs Fermi-Dirac statistics while properly modeling the finite density of states (DOS) of 2D semiconductors and graphene. The approach circumvents difficulties that arise in commercial TCAD tools, such as the proper handling of the 2D DOS and the simulation boundary conditions when the structure terminates with a nonmetallic material. Based on this methodology, we have developed 2dmatstacks, an open-source tool freely available on nanohub.org. Overall, this work equips researchers to analyze, understand, and predict experimental results in complicated vdW stacks. </p><p>1</p><p>Dielectric 1 </p><p>Layer 2 Dielectric 2 </p><p>ꢀ</p><p>ꢁ</p><p>2D material / metal </p><p>dielectric <br>Dielectric ꢃ − ꢅ </p><p>Layer ꢃ − ꢄ </p><p>ꢀ<sub style="top: 0.1674em;">ꢂ−1 </sub></p><p>Dielectric ꢃ − ꢄ </p><p>ꢀ</p><p>ꢂ</p><p>Layer ꢃ </p><p>Fig. 1. An n-layer vdW heterostructure with voltages applied to each layer. </p><p>[<a href="#7_11">11</a>], [<a href="#7_4">13</a>], [<a href="#7_12">21</a>]. For multilayer vdW heterostructures, however, Poisson’s equation results in several difficulties: </p><p>Index Terms—2D materials, TMDC, graphene, van der Waals heterostructures, electrostatics, quantum capacitance, density of states, DOS </p><p>(i) there is no easy way to incorporate a 2D DOS; <br>(ii) it is difficult to place grid points in the out-of-plane direction due to the discrete nature of 2D materials; and <br>(iii) boundary conditions are poorly defined when the structure terminates with a nonmetallic material [<a href="#7_13">22</a>]. </p><p>I. INTRODUCTION </p><p>Equivalent circuit models composed of geometric and quantum capacitances have been proposed for devices composed of a single layer or two different layers of 2D semiconductors [<a href="#7_3">9</a>], [<a href="#7_14">12</a>], <a href="#7_4">[</a><a href="#7_4">13</a>]; however, these circuit models cannot be easily expanded to n layers (as shown in <a href="#1_0">Fig. 1</a>) since they incorporate the work function difference between the layers as a flatband voltage shift of the gate potential [<a href="#7_3">9</a>]. A single flatband voltage shift cannot accommodate the work function differences of an arbitrary number of layers. Similarly, their model’s definition of the voltage across the quantum capacitor (E<sub style="top: 0.1245em;">F </sub>= qV<sub style="top: 0.1245em;">C</sub>) does not extend to multiple layers. <br>TRUCTURES fabricated from 2D materials have evolved from single-layer transistors to complex van der Waals </p><p>S</p><p>(vdW) heterostructures that have yielded exciting physics and applications [<a href="#6_0">1</a>]–[<a href="#7_0">6</a>]. These vdW stacks consist of multiple 2D layers on top of each other separated by either an insulator or a vdW gap (i.e., the innate atomic spacing between 2D layers) [<a href="#7_1">7</a>], [<a href="#7_2">8</a>]. With an increasing number of experiments on novel vdW structures, tools are needed to explain their device characteristics. The circuit models developed so far have focused on transistor characteristics of devices made from a single 2D material [<a href="#7_3">9</a><a href="#7_4">]–[</a><a href="#7_4">13</a>]. Research on 2D materials, however, extends beyond lateral transport in 2D FETs. Bandto-band tunneling [<a href="#7_5">14</a>]–[<a href="#7_6">16</a>], the hot-electron transistor [<a href="#7_7">17</a>]– [<a href="#7_8">19</a>], and metal-to-insulator transitions [<a href="#7_9">20</a>] are examples of phenomena where the vertical electrostatics of complex vdW heterostructures must be understood to explain the device physics. <br>Here, we derive an equivalent circuit model for the vertical electrostatics of a vdW heterostructure from the out-of-plane energy-band diagram, which provides an intuitive explanation of the circuit elements. We show that, although the direct solution of the equivalent circuit for an n-layer structure is not possible due to the variable, nonlinear quantum capacitance of each layer, an efficient method for solving the circuit is possible using a physics-based approach. Overall, the method presented in this paper provides <br>Existing techniques to calculate the electrostatics — the charge density, Fermi level, and electrostatic potential — of structures made from 2D materials solve either Poisson’s equation [<a href="#7_10">10</a>] or equivalent circuit models for the devices [<a href="#7_3">9</a>], <br>(i) the ability to incorporate an arbitrary number of layers </p><p>of 2D semiconductors, graphene, or metals with different work function into a vdW structure; </p><p>The authors are with the Department of Electrical Engineering, Columbia University, New York, NY 10027, USA, (e-mail: [email protected]) </p><p>Digital Object Identifier: 10.1109/TED.2018.2851920 </p><p></p><ul style="display: flex;"><li style="flex:1">c</li><li style="flex:1">1557-9646 ꢀ 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. </li></ul><p><a href="/goto?url=http://www.ieee.org/publicationsstandards/publications/rights/index.html for more information." target="_blank">See http://www.ieee.org/publications</a><a href="/goto?url=http://www.ieee.org/publicationsstandards/publications/rights/index.html for more information." target="_blank"> </a><a href="/goto?url=http://www.ieee.org/publicationsstandards/publications/rights/index.html for more information." target="_blank">standards/publications/rights/index.html for more information. </a></p><p>2</p><p>(ii) the ability to apply an independent potential bias to each layer; </p><p>(a) </p><p>(b) <br>Layer 1 </p><p>Layer 2 <br>Layer 1 Dielectric Layer 2 </p><p>ꢀ</p><p>1</p><p>(iii) the proper DOS for 2D semiconductors and graphene that captures the quantum effects arising from the atomic thickness; </p><p>ꢀ</p><p>ꢁ</p><p>ꢇ<sub style="top: 0.1395em;">ꢈꢉꢊ </sub></p><p>ꢇ<sub style="top: 0.1395em;">ꢈꢉꢊ </sub></p><p>ꢑꢀ </p><p>ꢎꢒ </p><p>(iv) the handling of non-degenerate and degenerate carrier concentrations through the use of Fermi-Dirac statistics; and </p><p><strong>Layer </strong>ꢆ <strong>Dielectric Layer </strong>ꢏ </p><p><strong>Layer 2 </strong></p><p><strong>Layer </strong>ꢆ </p><p></p><ul style="display: flex;"><li style="flex:1">ꢐ<sub style="top: 0.1394em;">1 </sub></li><li style="flex:1">ꢐ<sub style="top: 0.1404em;">ꢁ </sub></li></ul><p></p><p>ꢕ</p><p>1ꢎ </p><p>ꢕ</p><p>ꢁꢎ </p><p>(v) a computationally efficient methodology that yields the energy-band diagram in the out-of-plane direction — providing a clear, intuitive picture of the charge, potential, and Fermi level across the structure. </p><p><strong>Eq. 1 </strong></p><p>ꢋꢇ<sub style="top: 0.1394em;">ꢊ</sub>−ꢇ<sub style="top: 0.1394em;">ꢌ</sub>ꢍ<sub style="top: 0.1394em;">1ꢎ </sub>ꢋꢇ<sub style="top: 0.1394em;">ꢊ</sub>−ꢇ<sub style="top: 0.1394em;">ꢌ</sub>ꢍ<sub style="top: 0.1394em;">ꢁꢎ </sub></p><p>ꢋꢇ<sub style="top: 0.1395em;">ꢊ</sub>−ꢇ<sub style="top: 0.1395em;">ꢌ</sub>ꢍ<sub style="top: 0.1395em;">ꢁ </sub><br>ꢋꢇ<sub style="top: 0.1395em;">ꢊ</sub>−ꢇ<sub style="top: 0.1395em;">ꢌ</sub>ꢍ<sub style="top: 0.1395em;">1 </sub><br>ꢑꢋꢀ − ꢀ ꢍ </p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">ꢁ</li></ul><p></p><p>(c) </p><p>ꢕ<sub style="top: 0.1394em;">1ꢎ</sub>/ꢑ </p><p>ꢀ<sub style="top: 0.1395em;">ꢔ,1 </sub></p><p>II. EQUIVALENT CIRCUIT MODEL </p><p>- + </p><ul style="display: flex;"><li style="flex:1">+</li><li style="flex:1">-</li></ul><p>-</p><p>ꢀ</p><p>A. Two-Layer Structure </p><p>1</p><p>2D material/ metal </p><p>ꢓ<sub style="top: 0.1395em;">ꢔ,1 </sub>ꢓ<sub style="top: 0.1395em;">ꢔ,ꢁ </sub></p><p>+</p><p>To derive the equivalent circuit for an n-layer vdW heterostructure, we begin by considering only two layers, as shown in <a href="#2_0">Fig. 2</a>. The layers are either a 2D semiconductor, graphene, or metal, while the dielectric between the layers is either an insulator or a vdW gap [<a href="#7_15">23</a>]. Here, a vdW gap is treated as a dielectric with vacuum permittivity and atomic </p><p><strong>Eq. 6 </strong></p><p>ꢀ</p><p>ꢎꢒ </p><p>ꢓ<sub style="top: 0.1395em;">ꢎꢒ </sub></p><p>-</p><p>dielectric </p><p>+</p><p>ꢀ</p><p>ꢁ</p><p></p><ul style="display: flex;"><li style="flex:1">-</li><li style="flex:1">+</li></ul><p></p><p>ꢀ<sub style="top: 0.1394em;">ꢔ,ꢁ </sub></p><p>ꢕ<sub style="top: 0.1395em;">ꢁꢎ</sub>/q </p><p>˚thickness (∼5 A). In isolation, layers 1 and 2 have different </p><p>Fig. 2. Energy-band diagrams of (a) two layers in isolation and (b) two layers in contact with one another. E<sub style="top: 0.0831em;">vac </sub>is the local vacuum level, E<sub style="top: 0.0831em;">c </sub>is the conduction-band edge, E<sub style="top: 0.1172em;">f </sub>is the Fermi level, W is the work function, χ is the electron affinity, and V<sub style="top: 0.083em;">ox </sub>is the potential drop across the dielectric. The </p><p>work functions, indicated by W<sub style="top: 0.1245em;">1o </sub>and W<sub style="top: 0.1245em;">2o </sub>in <a href="#2_0">Fig. 2</a>(a). <a href="#2_0">Figure 2</a><a href="#2_0">(b) </a>shows the out-of-plane energy-band diagram after the layers are brought together in a stack, and voltages V<sub style="top: 0.1245em;">1 </sub>and V<sub style="top: 0.1246em;">2 </sub>are applied. From the energy-band diagram, the potential drop across the dielectric (V<sub style="top: 0.1246em;">ox</sub>) can be expressed as </p><p>subscript indicates parameters for a layer in isolation. (c) Equivalent circuit of the structure in (b). C<sub style="top: 0.1116em;">Q </sub>is the quantum capacitance of a layer. </p><p>o</p><p>qV<sub style="top: 0.1245em;">ox </sub>= χ<sub style="top: 0.1245em;">2 </sub>−χ<sub style="top: 0.1245em;">1 </sub>+(E<sub style="top: 0.1245em;">c </sub>−E<sub style="top: 0.1245em;">f </sub>)<sub style="top: 0.1245em;">2 </sub>−(E<sub style="top: 0.1245em;">c </sub>−E<sub style="top: 0.1245em;">f </sub>)<sub style="top: 0.1245em;">1 </sub>+q(V<sub style="top: 0.1245em;">1 </sub>−V<sub style="top: 0.1245em;">2</sub>), (1) </p><p>With the definition of V<sub style="top: 0.1245em;">Q </sub>in <a href="#2_3">Eq. (3)</a>, we rewrite <a href="#2_4">Eq. (2) </a>as where q is the elementary charge, χ is the electron affinity, E<sub style="top: 0.1245em;">c </sub>− E<sub style="top: 0.1245em;">f </sub>is the difference between the conduction-band edge and the Fermi level, and V is the applied voltage. Using the definition that W<sub style="top: 0.1246em;">o </sub>= χ+(E<sub style="top: 0.1246em;">c </sub>−E<sub style="top: 0.1246em;">f </sub>)<sub style="top: 0.1246em;">o</sub>, <a href="#2_1">Eq. (1) </a>can be rewritten as </p><p>W<sub style="top: 0.1245em;">1o </sub></p><p>q</p><p>W<sub style="top: 0.1245em;">2o </sub></p><p>q</p><p>0 = V<sub style="top: 0.1246em;">1 </sub>− </p><p>− V<sub style="top: 0.1246em;">Q,1 </sub>− V<sub style="top: 0.1246em;">ox </sub>+ V<sub style="top: 0.1246em;">Q,2 </sub></p><p>+</p><p>− V<sub style="top: 0.1246em;">2</sub>, </p><p>(6) which represents Kirchhoff’s voltage law (KVL) for the loop shown in <a href="#2_0">Fig. 2</a>(c). The terms V<sub style="top: 0.1245em;">Q </sub>and V<sub style="top: 0.1245em;">ox </sub>are represented by capacitances in the circuit model since these voltages are dependent on the net charge in the respective layers. <br>C<sub style="top: 0.1245em;">Q </sub>is indicated as a variable capacitance since its capacitance changes as a function of V<sub style="top: 0.1245em;">Q </sub>(or, equivalently, E<sub style="top: 0.1245em;">c </sub>−E<sub style="top: 0.1245em;">f </sub>). A formal definition is provided in Appendix B. </p><p>qV<sub style="top: 0.1245em;">ox </sub>= W<sub style="top: 0.1245em;">2o </sub>− W<sub style="top: 0.1245em;">1o </sub>+ [(E<sub style="top: 0.1245em;">c </sub>− E<sub style="top: 0.1245em;">f </sub>)<sub style="top: 0.1245em;">2 </sub>− (E<sub style="top: 0.1245em;">c </sub>− E<sub style="top: 0.1245em;">f </sub>)<sub style="top: 0.1245em;">2o</sub>] </p><p>(2) </p><p>− [(E<sub style="top: 0.1245em;">c </sub>− E<sub style="top: 0.1245em;">f </sub>)<sub style="top: 0.1245em;">1 </sub>− (E<sub style="top: 0.1245em;">c </sub>− E<sub style="top: 0.1245em;">f </sub>)<sub style="top: 0.1245em;">1o</sub>] + q(V<sub style="top: 0.1245em;">1 </sub>− V<sub style="top: 0.1245em;">2</sub>), </p><p>where W is the work function, and the subscript indicates </p><p>o</p><p>parameters for a layer in isolation. For each layer in a vdW stack, we represent the change in E<sub style="top: 0.1246em;">c </sub>− E<sub style="top: 0.1246em;">f </sub>from its value in isolation by defining a new term: <br>The constant voltage sources equal to the work function of the layers obviate the need for fitting parameters to account for the initial band bending across the device. The presence of these constant voltage sources is due to the definition of V<sub style="top: 0.1246em;">Q </sub>in <a href="#2_3">Eq. (3)</a><a href="#2_3">. </a>[One could choose to redefine V<sub style="top: 0.1246em;">Q </sub>such that the constant voltage offset is included as a part of the potential across the quantum capacitance; however, by doing so, the values of V<sub style="top: 0.1245em;">Q </sub>for different layers would be shifted by the electron affinities, obscuring the physical significance of V<sub style="top: 0.1245em;">Q </sub>since its sign would no longer be related to the net charge on the layer.] Moreover, our definition of V<sub style="top: 0.1246em;">Q </sub>highlights the flatband condition for a multilayer structure — when the voltage applied to every layer is equal to its work function, the net charge on every layer is zero since all V<sub style="top: 0.1245em;">Q </sub>and V<sub style="top: 0.1245em;">ox </sub>are zero. </p><p>qV<sub style="top: 0.1245em;">Q </sub>= (E<sub style="top: 0.1245em;">c </sub>− E<sub style="top: 0.1245em;">f </sub>) − (E<sub style="top: 0.1245em;">c </sub>− E<sub style="top: 0.1245em;">f </sub>)<sub style="top: 0.1245em;">o</sub>. </p><p>(3) <br>A change in V<sub style="top: 0.1245em;">Q </sub>induces a change in the net charge (Q) on a layer due to the change in E<sub style="top: 0.1245em;">c </sub>− E<sub style="top: 0.1245em;">f </sub>. This represents the quantum capacitance of the layer, which is defined as </p><p>∂Q </p><p>C<sub style="top: 0.1245em;">Q </sub></p><p>=</p><p>,</p><p>(4) </p><p>∂V<sub style="top: 0.1245em;">Q </sub></p><p>where V<sub style="top: 0.1246em;">Q </sub>is the voltage across the quantum capacitance. We choose our definition of V<sub style="top: 0.1245em;">Q </sub>such that the net charge on a layer is zero when V<sub style="top: 0.1245em;">Q </sub>= 0 or, equivalently, when (E<sub style="top: 0.1245em;">c </sub>− E<sub style="top: 0.1245em;">f </sub>) = (E<sub style="top: 0.1245em;">c </sub>− E<sub style="top: 0.1245em;">f </sub>)<sub style="top: 0.1245em;">o</sub>. The sign of V<sub style="top: 0.1245em;">Q </sub>indicates the sign of the net charge on the layer. A positive Q yields a positive V<sub style="top: 0.1245em;">Q</sub>.<sup style="top: -0.3012em;"><a href="#2_2">1 </a></sup></p><p>Trap states can be incorporated into the model by inserting a trap capacitance in parallel with the quantum capacitance for a </p><p><sup style="top: -0.2344em;">1</sup>We can express C<sub style="top: 0.1116em;">Q </sub>in a more conventional form [<a href="#7_14">12</a>] in terms of the Fermi level using −q∂V<sub style="top: 0.1116em;">Q</sub>/∂E<sub style="top: 0.1172em;">f </sub>= 1: </p><p></p><ul style="display: flex;"><li style="flex:1">−q∂V<sub style="top: 0.1117em;">Q </sub></li><li style="flex:1">∂Q </li><li style="flex:1">∂Q </li></ul><p></p><p>C<sub style="top: 0.1116em;">Q </sub></p><p>=</p><p>·</p><p>= −q </p><p>.</p><p>(5) </p><p></p><ul style="display: flex;"><li style="flex:1">∂V<sub style="top: 0.1117em;">Q </sub></li><li style="flex:1">∂E<sub style="top: 0.1172em;">f </sub></li><li style="flex:1">∂E<sub style="top: 0.1172em;">f </sub></li></ul><p></p><p>3</p><p>specific layer. The trap capacitance is the quantum capacitance due to the density of trap states with a DOS profile for g<sub style="top: 0.1245em;">c</sub>(E) and g<sub style="top: 0.1245em;">v</sub>(E) that corresponds to the trap distribution within the material (For clarity, capacitances due to trap states are not shown in the equivalent circuit.) The provision to include trap states is useful for modeling effects such as Fermi level pinning in 2D semiconductors. </p><p>ꢓ<sub style="top: 0.1364em;">geo,ꢖ </sub>ꢓ<sub style="top: 0.138em;">geo,ꢖ </sub></p><p></p><ul style="display: flex;"><li style="flex:1">ꢓ<sub style="top: 0.1668em;">ꢎ</sub><sup style="top: -0.2729em;">′</sup><sub style="top: 0.1668em;">ꢒ,ꢖ </sub></li><li style="flex:1">ꢓ<sub style="top: 0.1364em;">ꢎꢒ,ꢖ </sub></li></ul><p></p><p>ꢓ<sub style="top: 0.1668em;">ꢎ</sub><sup style="top: -0.2744em;">′</sup><sub style="top: 0.1668em;">ꢒ,ꢖ </sub><br>ꢓ<sub style="top: 0.1379em;">geo,ꢖ+1 </sub>ꢓ<sub style="top: 0.1364em;">geo,ꢖ+1 </sub></p><p>The vertical potential drop across a 2D layer can be incorporated into the equivalent circuit by adding a thicknessdependent geometric capacitance equal to </p><p>Fig. 3. The potential drop across a semiconductor layer can be incorporated </p><p>′</p><p>into the model by defining an equivalent dielectric capacitance (C<sub style="top: 0.1661em;">ox</sub>) that accounts for the series combination of the geometric capacitance of the adjacent layers. Here, C<sub style="top: 0.083em;">geo </sub>is the geometric capacitance defined in <a href="#3_1">Eq. (7)</a>. </p><p>ǫ</p><p>C<sub style="top: 0.1245em;">geo </sub></p><p>=</p><p>,</p><p>(7) </p><p>t/2 </p><p>where ǫ is the permittivity and t is the thickness of the layer. The layer’s geometric capacitance is added in series with </p><p>ꢀ<sub style="top: 0.143em;">ꢔ,1 </sub></p><p>-</p><p>ꢕ<sub style="top: 0.143em;">1ꢎ</sub>/ꢑ </p><p>C</p><p><sub style="top: 0.1245em;">ox</sub>, as shown in <a href="#3_0">Fig. 3</a>. The factor of two in <a href="#3_1">Eq. (7) </a>splits </p><p>+</p><p>--</p><p>+</p><p>+</p><p>the layer’s total geometric capacitance into two halves and assumes that the layer’s charge is dependent on the potential at the vertical center of the layer. (The exact calculation of the position-dependent charge in an atomically thin layer requires the self-consistent solution of the coupled Schro¨dinger-Poisson equations, which is not amenable to an equivalent circuit model.) </p><p>ꢀ</p><p>1</p><p>ꢀ</p><p>ꢎꢒ,1 </p><p>+-</p><p>ꢀ</p><p>ꢁ</p><p></p><ul style="display: flex;"><li style="flex:1">-</li><li style="flex:1">+</li></ul><p></p><p>ꢀ<sub style="top: 0.143em;">ꢔ,ꢁ </sub></p><p>ꢕ<sub style="top: 0.1429em;">ꢁꢎ</sub>/ꢑ </p><p>We can incorporate the vertical potential drop across the geometric capacitance of the upper and lower 2D layers by </p><p>′</p><p>defining an effective dielectric capacitance (C<sub style="top: 0.2053em;">ox</sub>) equal to </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ<sub style="top: 0.143em;">ꢔ,ꢂ−1 </sub></li><li style="flex:1">ꢕ<sub style="top: 0.143em;">ꢋꢂ−1ꢍꢎ</sub>/ꢑ </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">-</li><li style="flex:1">+</li></ul><p>-</p><p>-</p><p>+</p><p>+</p><p>ꢀ<sub style="top: 0.143em;">ꢂ−1 </sub></p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li><li style="flex:1">1</li><li style="flex:1">1</li></ul><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">+</li><li style="flex:1">+</li></ul><p></p><p>,</p><p>(8) </p><p>ꢀ</p><p>ꢎꢒ,ꢂ−1 </p><p>+-</p><p>′</p><p></p><ul style="display: flex;"><li style="flex:1">C<sub style="top: 0.2314em;">ox,i </sub></li><li style="flex:1">C<sub style="top: 0.1246em;">ox,i </sub></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">C<sub style="top: 0.1246em;">geo,i </sub></li><li style="flex:1">C<sub style="top: 0.1246em;">geo,i+1 </sub></li></ul><p></p><p>ꢀ</p><p>ꢂ</p><p>as illustrated in <a href="#3_0">Fig. 3</a>. This approach yields a linear potential profile and, hence, linear band bending vertically across the layer. Accounting for the geometric capacitance of a 2D layer is necessary when the potential drop across the 2D layer is comparable to that of the dielectric, which occurs when the 2D layer and dielectric thicknesses are similar. </p><p></p><ul style="display: flex;"><li style="flex:1">-</li><li style="flex:1">+</li></ul><p></p><p>ꢀ<sub style="top: 0.1437em;">ꢔ,ꢂ </sub></p><p>ꢕ<sub style="top: 0.143em;">ꢂꢎ</sub>/ꢑ </p><p>Fig. 4. Equivalent circuit for an n-layer heterostructure. V is the applied voltage, W<sub style="top: 0.0831em;">o </sub>is the work function for the layer in isolation, V<sub style="top: 0.1117em;">Q </sub>is the voltage across the quantum capacitance (see <a href="#2_3">Eq. (3)</a>), and V<sub style="top: 0.083em;">ox </sub>is the potential drop across the dielectric. </p><p>For multilayer 2D semiconductors, a non-linear vertical potential profile arising from an inhomogeneous charge distribution can be approximated by modeling each constituent layer separately, spaced by the vdW gap. The non-linear profile (and inhomogeneous charge distribution) across a multilayer 2D semiconductor is, thus, approximated as a combination of linear potential drops (with different slopes) across the individual layers. <br>Our model is developed to analyze the electrostatics in quasi-equilibrium, in the absence of charge transport. Modifications, such as using quasi-Fermi levels for electrons and holes, can be potentially incorporated to study transport phenomena in future work. <br>The direct (naive) approach to solve the circuit is to write the <br>KVL equations for the n − 1 voltage loops. The n<sup style="top: -0.3013em;">th </sup>equation is found by demanding that the sum of the net charge on all the layers is equal to zero; however, the presence of n nonlinear variable quantum capacitance elements; the orders of magnitude difference among the DOS of 2D semiconductors, graphene, and metals; and the lack of a closed-form expression for the charge density in graphene make the solution of these n coupled equations non-trivial. <br>Keeping these factors in consideration, we propose an efficient solution to solve the net charge and potential drops for an n-layer vdW heterostructure in the following section. </p><p>B. Multilayer Structure </p><p>The equivalent circuit for an n-layer vdW heterostructure is shown in <a href="#3_2">Fig. 4</a>. To solve the circuit (i.e., to determine </p><p>III. EFFICIENT SOLUTION FOR AN n-LAYER STRUCTURE </p><p>the net charge on each layer and the potential drop across A. Derivation the dielectrics) for a given set of applied voltages, V<sub style="top: 0.1245em;">Q </sub>(or, <br>The potential drop across the i<sup style="top: -0.3012em;">th </sup>dielectric sandwiched </p><p>between i<sup style="top: -0.3013em;">th </sup>and (i + 1)<sup style="top: -0.3013em;">th </sup>layer in an n-layer heterostructure can be generalized from <a href="#2_1">Eq. (1) </a>as equivalently, E<sub style="top: 0.1246em;">c </sub>− E<sub style="top: 0.1246em;">f </sub>) for each layer must be determined, yielding n unknown variables.<sup style="top: -0.3013em;"><a href="#3_3">2 </a></sup></p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages7 Page
-
File Size-