
<p>CTL Model Checking </p><p>Prof. P.H. Schmitt </p><p></p><ul style="display: flex;"><li style="flex:1">Institut fur Theoretische Informatik </li><li style="flex:1">¨</li></ul><p></p><ul style="display: flex;"><li style="flex:1">Fakultat fur Informatik </li><li style="flex:1">¨</li><li style="flex:1">¨</li></ul><p></p><ul style="display: flex;"><li style="flex:1">Universitat Karlsruhe (TH) </li><li style="flex:1">¨</li></ul><p></p><p>Formal Systems II </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">1 / 26 </li></ul><p></p><p>Fixed Point Theory </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">2 / 26 </li></ul><p></p><p>Fixed Points Definition </p><p>Definition </p><p>Let f : P(G) → P(G) be a set valued function and Z a subset of G. <br>1. Z is called a fixed point of f if f(Z) = Z . 2. Z is called the least fixed point of f is Z is a fixed point and for all other fixed points U of f the relation Z ⊆ U is true. </p><p>3. Z is called the greatest fixed point of f is Z is a fixed point and for all other fixed points U of f the relation U ⊆ Z is true. </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">3 / 26 </li></ul><p></p><p>Finite Fixed Point Lemma </p><p>Let G be an arbitrary set, Let P(G) denote the power set of a set G. A function f : P(G) → P(G) is called monotone of for all X, Y ⊆ G </p><p>X ⊆ Y ⇒ f(X) ⊆ f(Y ) </p><p>Let f : P(G) → P(G) be a monotone function on a finite set G. <br>1. There is a least and a greatest fixed point of f. </p><p>S</p><p>2. <sub style="top: 0.2688em;">n≥1 </sub>f<sup style="top: -0.3299em;">n</sup>(∅) is the least fixed point of f. </p><p>T</p><p>3. <sub style="top: 0.2688em;">n≥1 </sub>f<sup style="top: -0.3299em;">n</sup>(G) is the greatest fixed point of f. </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">4 / 26 </li></ul><p></p><p>Proof </p><p>of part (2) of the finite fixed point Lemma </p><p>Monotonicity of f yields </p><p>∅ ⊆ f(∅) ⊆ f<sup style="top: -0.3753em;">2</sup>(∅) ⊆ . . . ⊆ f<sup style="top: -0.3753em;">n</sup>(∅) ⊆ . . . </p><p>Since G is finite there must be an i such that f<sup style="top: -0.3298em;">i</sup>(∅) = f<sup style="top: -0.3298em;">i+1</sup>(∅). </p><p>S</p><p>Then Z = <sub style="top: 0.2688em;">n≥1 </sub>f<sup style="top: -0.3299em;">n</sup>(∅) = f<sup style="top: -0.3299em;">i</sup>(∅) is a fixed point of f: </p><p>f(Z) = f(f<sup style="top: -0.3753em;">i</sup>(∅)) = f<sup style="top: -0.3753em;">i+1</sup>(∅) = f<sup style="top: -0.3753em;">i</sup>(∅) = Z </p><p>Let U be another fixed point of f. From ∅ ⊆ U be infer by monotonicity of f at first f(∅) ⊆ f(U) = U. By induction on n we conclude f<sup style="top: -0.3299em;">n</sup>(∅) ⊆ U for all n. Thus also Z = f<sup style="top: -0.3299em;">i</sup>(∅) ⊆ U. </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">5 / 26 </li></ul><p></p><p>Continuous Functions </p><p>Definition </p><p>A function f : P(G) → P(G) is called <br>1. ∪-continuous (upward continuous), if for every ascending sequence </p><p>M<sub style="top: 0.1363em;">1 </sub>⊆ M<sub style="top: 0.1363em;">2 </sub>⊆ . . . ⊆ M<sub style="top: 0.1363em;">n </sub>⊆ . . . </p><p></p><ul style="display: flex;"><li style="flex:1">[</li><li style="flex:1">[</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">f( </li><li style="flex:1">M<sub style="top: 0.1363em;">n</sub>) = </li><li style="flex:1">f(M<sub style="top: 0.1363em;">n</sub>) </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">n≥1 </li><li style="flex:1">n≥1 </li></ul><p></p><p>2. ∩-continuous (downward continuous) , if for every descending </p><p>sequence M<sub style="top: 0.1363em;">1 </sub>⊇ M<sub style="top: 0.1363em;">2 </sub>⊇ . . . ⊇ M<sub style="top: 0.1363em;">n </sub>⊇ . . . </p><p></p><ul style="display: flex;"><li style="flex:1">\</li><li style="flex:1">\</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">f( </li><li style="flex:1">M<sub style="top: 0.1363em;">n</sub>) = </li><li style="flex:1">f(M<sub style="top: 0.1363em;">n</sub>) </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">n≥1 </li><li style="flex:1">n≥1 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">6 / 26 </li></ul><p></p><p>Fixed Points For Continuous Functions </p><p>Let f : P(G) → P(G) be an upward continuous functions and g : P(G) → P(G) a downward continuous function. </p><p>The for all M, N ∈ P(G) such that M ⊆ f(M) and g(N) ⊆ N the following is true. </p><p>S</p><p>1. <sub style="top: 0.2688em;">n≥1 </sub>f<sup style="top: -0.3299em;">n</sup>(M) is the least fixed point of f containing M, </p><p>T</p><p>2. <sub style="top: 0.2688em;">n≥1 </sub>g<sup style="top: -0.3299em;">n</sup>(M) is the greatest fixed point of g contained in M. </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">7 / 26 </li></ul><p></p><p>Proof of (1) </p><p>By monotonicity we first obtain </p><p>M ⊆ f(M) ⊆ f<sup style="top: -0.3754em;">2</sup>(M) ⊆ . . . ⊆ f<sup style="top: -0.3754em;">n</sup>(M) ⊆ . . . </p><p>Let P = <sub style="top: 0.2688em;">n≥1 </sub>f<sup style="top: -0.3299em;">n</sup>(M). This immediately gives M ⊆ P. Furthermore </p><p>S<br>S</p><p>f(P) = f( <sub style="top: 0.2688em;">n≥1 </sub>f<sup style="top: -0.3299em;">n</sup>(M)) </p><p>S</p><p>n+1 </p><p>=== P </p><p>f</p><p>(M) </p><p>by continuity since f(M) ⊆ f<sup style="top: -0.3298em;">2</sup>(M) </p><p>n≥1 </p><p>S</p><p><sub style="top: 0.2688em;">n≥1 </sub>f<sup style="top: -0.3298em;">n</sup>(M) </p><p>Assume now that Q is another fixed point of f satisfying M ⊆ Q. By Monotonicity and the fixed point property f(M) ⊆ f(Q) = Q and furthermore for every n ≥ 1 also f<sup style="top: -0.3298em;">n</sup>(M) ⊆ Q. </p><p>S</p><p>Thus we obtain P = <sub style="top: 0.2687em;">n≥1 </sub>f<sup style="top: -0.3299em;">n</sup>(M) ⊆ Q </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">8 / 26 </li></ul><p></p><p>Knaster-Tarski-Fixed-Points Theorem </p><p>Let f : P(G) → P(G) be a monotone function. Then f has a least and a greatest fixed point. <br>Note, G need not be finite. </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">9 / 26 </li></ul><p></p><p>Proof </p><p>Fixed Point </p><p>Let L = {S ⊆ G | f(S) ⊆ S}, e.g., G ∈ L. </p><p>T</p><p>Let U = L. Show f(U) = U! </p><p>For all S ∈ L by the property of an intersection: U ⊆ S. By monotonicity and definition of L f(U) ⊆ f(S) ⊆ S. </p><p>T</p><p>Thus f(U) ⊆ L = U and we have already established half of our claim. By monotonicity f(U) ⊆ U implies f(f(U)) ⊆ f(U) which yields f(U) ∈ L and futhermore U ⊆ f(U). </p><p>We thus have indeed U = f(U). </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">10 / 26 </li></ul><p></p><p>Proof </p><p>Least Fixed Point </p><p>Now assume W is another fixed point of f,i.e., f(W) = W. This yields W ∈ L= {S ⊆ G | f(S) ⊆ S} and </p><p>T</p><p>U = L ⊆ W. </p><p>Thus U is the least fixed point of f. Following the same line of argument one can show that </p><p>S</p><p>{S ⊆ G | S ⊆ f(S)} is the greatest fixed point of f. </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">11 / 26 </li></ul><p></p><p>CTL Model Checking <br>Algorithm </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">12 / 26 </li></ul><p></p><p>Two Auxiliary Concepts </p><p>Let T = (S, R, v) be a transition system and F an CTL formula. The set </p><p>τ(F) = {s ∈ S | s |= F} </p><p>is called the characteristic region of F in T . The universal and existential next step functions f<sub style="top: 0.1408em;">AX</sub>, f<sub style="top: 0.1408em;">EX </sub>: P(S) → P(S) are defined by </p><p>f<sub style="top: 0.1408em;">AX</sub>(Z) = {s ∈ S | for all t with sRt we get t ∈ Z} f<sub style="top: 0.1407em;">EX</sub>(Z) = {s ∈ S | there exists a t with sRt and t ∈ Z} </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">13 / 26 </li></ul><p></p><p>CTL Model Checking Algorithm </p><p>Let T = (S, R, v) be a transition system and F an CTL formula. τ(F) is computed by the following high-level recursive algorithm: </p><p>123456789</p><p>τ(p) </p><p>==========</p><p>{s ∈ S | v(s, p) = 1} </p><p>τ(F<sub style="top: 0.1364em;">1</sub>) ∩ τ)F<sub style="top: 0.1364em;">2</sub>) </p><p>τ(F<sub style="top: 0.1364em;">1 </sub>∧ F<sub style="top: 0.1364em;">2</sub>) τ(F<sub style="top: 0.1364em;">1 </sub>∨ F<sub style="top: 0.1364em;">2</sub>) </p><p>τ(¬F<sub style="top: 0.1363em;">1</sub>) τ(F<sub style="top: 0.1364em;">1</sub>) ∪ τ(F<sub style="top: 0.1364em;">2</sub>) </p><p>S \ τ(F<sub style="top: 0.1363em;">1</sub>) </p><p>τ(A(F<sub style="top: 0.1363em;">1 </sub>U F<sub style="top: 0.1363em;">2</sub>)) τ(E(F<sub style="top: 0.1363em;">1 </sub>U F<sub style="top: 0.1363em;">2</sub>)) τ(AFF<sub style="top: 0.1364em;">1</sub>) τ(EFF<sub style="top: 0.1364em;">1</sub>) lfp[τ(F<sub style="top: 0.1363em;">2</sub>) ∪ (τ(F<sub style="top: 0.1363em;">1</sub>) ∩ f<sub style="top: 0.1407em;">AX</sub>(Z))] lfp[τ(F<sub style="top: 0.1363em;">2</sub>) ∪ (τ(F<sub style="top: 0.1363em;">1</sub>) ∩ f<sub style="top: 0.1408em;">EX</sub>(Z)] lfp[τ(F<sub style="top: 0.1364em;">1</sub>) ∪ f<sub style="top: 0.1407em;">AX</sub>(Z)] lfp[τ(F<sub style="top: 0.1364em;">1</sub>) ∪ f<sub style="top: 0.1408em;">EX</sub>(Z)] gfp[τ(F<sub style="top: 0.1363em;">1</sub>) ∩ f<sub style="top: 0.1407em;">EX</sub>(Z)] gfp[τ(F<sub style="top: 0.1363em;">1</sub>) ∩ f<sub style="top: 0.1407em;">AX</sub>(Z)] τ(EGF<sub style="top: 0.1363em;">1</sub>) </p><p>10 τ(AGF<sub style="top: 0.1363em;">1</sub>) </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">14 / 26 </li></ul><p></p><p>Correctness Proof </p><p>Case 10 AG F<sub style="top: 0.0831em;">1 </sub></p><p>By definition </p><p>τ(AG F<sub style="top: 0.1363em;">1</sub>) = {s ∈ S | s ∈ τ(F<sub style="top: 0.1363em;">1</sub>) and h ∈ τ(AG F<sub style="top: 0.1363em;">1</sub>) for all h with gRh} </p><p>Using Definition of the universal next step function: </p><p>τ(AG F<sub style="top: 0.1363em;">1</sub>) = τ(F<sub style="top: 0.1363em;">1</sub>) ∩ f<sub style="top: 0.1407em;">AX</sub>(τ(AG F<sub style="top: 0.1363em;">1</sub>)) </p><p>So, τ(AG F<sub style="top: 0.1363em;">1</sub>) is a fixed point of the function τ(F<sub style="top: 0.1363em;">1</sub>) ∩ f<sub style="top: 0.1407em;">AX</sub>(Z). It remains to see that it is the greatest fixed point. </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">15 / 26 </li></ul><p></p><p>Correctness Proof </p><p>Case 10 AG F<sub style="top: 0.0831em;">1 </sub>(continued) </p><p>Let H be another fixed point, i.e., H = τ(F<sub style="top: 0.1363em;">1</sub>) ∩ f<sub style="top: 0.1407em;">AX</sub>(H). We need to show H ⊆ τ(AG F<sub style="top: 0.1363em;">1</sub>)). Consider g<sub style="top: 0.1363em;">0 </sub>∈ H with the aim of showing that for all n ≥ 0 and all g<sub style="top: 0.1363em;">i </sub>satisfying g<sub style="top: 0.1364em;">i−1</sub>Rg<sub style="top: 0.1364em;">i </sub>for all 1 ≤ i ≤ n we obtain g<sub style="top: 0.1364em;">n </sub>∈ τ(F<sub style="top: 0.1364em;">1</sub>). </p><p>Observe H = τ(F<sub style="top: 0.1363em;">1</sub>) ∩ f<sub style="top: 0.1407em;">AX</sub>(H) ⊆ τ(F<sub style="top: 0.1363em;">1</sub>). Thus it suffices to show for all n ≥ 0 that g<sub style="top: 0.1363em;">n </sub>∈ H. For n = 0 that is true by assumptions. Assume g<sub style="top: 0.1363em;">n−1 </sub>∈ H. g<sub style="top: 0.1364em;">n−1 </sub>∈ H ⊆ f<sub style="top: 0.1407em;">AX</sub>(H) = {g | for all h with gRh we have h ∈ H}. </p><p>Thus g<sub style="top: 0.1363em;">n </sub>∈ H. </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">16 / 26 </li></ul><p></p><p>Correctness Proof </p><p>Case 6 E(F<sub style="top: 0.0831em;">1 </sub>U F<sub style="top: 0.0831em;">2</sub>) </p><p>By definition </p><p>τ(E(F<sub style="top: 0.1364em;">1 </sub>U F<sub style="top: 0.1364em;">2</sub>)) = {g ∈ S | s |= F<sub style="top: 0.1364em;">2 </sub>or s |= F<sub style="top: 0.1364em;">1 </sub>and </p><p>there exists h with gRh and h |= F<sub style="top: 0.1363em;">2</sub>} <br>Using next step function: </p><p>τ(E(F<sub style="top: 0.1364em;">1 </sub>U F<sub style="top: 0.1364em;">2</sub>)) = τ(F<sub style="top: 0.1364em;">2</sub>) ∪ (τ(F<sub style="top: 0.1364em;">1</sub>) ∩ f<sub style="top: 0.1407em;">EX</sub>(τ(E(F<sub style="top: 0.1364em;">1 </sub>U F<sub style="top: 0.1364em;">2</sub>))) </p><p>Thus τ(E(F<sub style="top: 0.1363em;">1 </sub>U F<sub style="top: 0.1363em;">2</sub>)) is a fixed point of the function </p><p>τ(F<sub style="top: 0.1363em;">2</sub>) ∪ (τ(F<sub style="top: 0.1363em;">1</sub>) ∩ f<sub style="top: 0.1407em;">EX</sub>(Z)). </p><p>It remains to show that it is the least fixed point. </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">17 / 26 </li></ul><p></p><p>Correctness Proof </p><p>Case 6 E(F<sub style="top: 0.0831em;">1 </sub>U F<sub style="top: 0.0831em;">2</sub>) (continued) </p><p>Consider H ⊆ S with H = τ(F<sub style="top: 0.1363em;">2</sub>) ∪ (τ(F<sub style="top: 0.1363em;">1</sub>) ∩ f<sub style="top: 0.1407em;">EX</sub>(H)). We need τ(E(F<sub style="top: 0.1364em;">1 </sub>U F<sub style="top: 0.1364em;">2</sub>)) ⊆ H. Fix g<sub style="top: 0.1363em;">0 </sub>∈ τ(E(F<sub style="top: 0.1363em;">1 </sub>U F<sub style="top: 0.1363em;">2</sub>)), try to arrive at g<sub style="top: 0.1363em;">0 </sub>∈ H. There is an n ∈ N and there are g<sub style="top: 0.1363em;">i </sub>for 1 ≤ i ≤ n satisfying </p><p>1. g<sub style="top: 0.1363em;">i</sub>Rg<sub style="top: 0.1363em;">i+1 </sub>for all 0 ≤ i < n. </p><p>2. g<sub style="top: 0.1363em;">n </sub>∈ τ(F<sub style="top: 0.1363em;">2</sub>). </p><p>3. g<sub style="top: 0.1363em;">i </sub>∈ τ(F<sub style="top: 0.1363em;">1</sub>) for all 0 ≤ i < n. </p><p>We set out to prove g<sub style="top: 0.1363em;">n </sub>∈ H by induction on n. </p><p>n = 0 Since H = τ(F<sub style="top: 0.1364em;">2</sub>) ∪ (τ(F<sub style="top: 0.1364em;">1</sub>) ∩ f<sub style="top: 0.1407em;">EX</sub>(H)) ⊇ τ(F<sub style="top: 0.1364em;">2</sub>) and </p><p>g<sub style="top: 0.1364em;">0 </sub>= g<sub style="top: 0.1364em;">n </sub>∈ τ(F<sub style="top: 0.1364em;">2</sub>). </p><p>n − 1 Ã n By induction hypothesis we have g<sub style="top: 0.1363em;">1 </sub>∈ H Since g<sub style="top: 0.1363em;">0 </sub>∈ τ(F<sub style="top: 0.1363em;">1</sub>) and g<sub style="top: 0.1363em;">0</sub>Rg<sub style="top: 0.1363em;">1 </sub>we obtain g<sub style="top: 0.1363em;">0 </sub>∈ (τ(F<sub style="top: 0.1363em;">1</sub>) ∩ f<sub style="top: 0.1407em;">EX</sub>(H)) ⊆ H and thus also g<sub style="top: 0.1363em;">0 </sub>∈ H. </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">18 / 26 </li></ul><p></p><p>CTL Model Checking <br>Example </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">19 / 26 </li></ul><p></p><p>Transition System </p><p>s<sub style="top: 0.0782em;">0 </sub>n<sub style="top: 0.0782em;">1</sub>n<sub style="top: 0.0782em;">2 </sub></p><p></p><ul style="display: flex;"><li style="flex:1">s<sub style="top: 0.0782em;">1 </sub></li><li style="flex:1">s<sub style="top: 0.0782em;">5 </sub></li><li style="flex:1">n<sub style="top: 0.0782em;">1</sub>t<sub style="top: 0.0782em;">2 </sub></li><li style="flex:1">t<sub style="top: 0.0782em;">1</sub>n<sub style="top: 0.0782em;">2 </sub></li></ul><p></p><ul style="display: flex;"><li style="flex:1">s<sub style="top: 0.0782em;">3 </sub></li><li style="flex:1">s<sub style="top: 0.0782em;">8 </sub></li></ul><p></p><ul style="display: flex;"><li style="flex:1">s<sub style="top: 0.0782em;">2 </sub>c<sub style="top: 0.0782em;">1</sub>n<sub style="top: 0.0782em;">2 </sub></li><li style="flex:1">n<sub style="top: 0.0782em;">1</sub>c<sub style="top: 0.0782em;">2 </sub>s<sub style="top: 0.0782em;">6 </sub></li><li style="flex:1">t<sub style="top: 0.0782em;">1</sub>t<sub style="top: 0.0782em;">2 </sub></li><li style="flex:1">t<sub style="top: 0.0782em;">1</sub>t<sub style="top: 0.0782em;">2 </sub></li></ul><p></p><ul style="display: flex;"><li style="flex:1">s<sub style="top: 0.0782em;">4 </sub></li><li style="flex:1">s<sub style="top: 0.0782em;">7 </sub></li></ul><p></p><ul style="display: flex;"><li style="flex:1">t<sub style="top: 0.0782em;">1</sub>c<sub style="top: 0.0782em;">2 </sub></li><li style="flex:1">c<sub style="top: 0.0782em;">1</sub>t<sub style="top: 0.0782em;">2 </sub></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">20 / 26 </li></ul><p></p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages26 Page
-
File Size-