CTL Model Checking

CTL Model Checking

<p>CTL Model Checking </p><p>Prof. P.H. Schmitt </p><p></p><ul style="display: flex;"><li style="flex:1">Institut fur Theoretische Informatik </li><li style="flex:1">¨</li></ul><p></p><ul style="display: flex;"><li style="flex:1">Fakultat fur Informatik </li><li style="flex:1">¨</li><li style="flex:1">¨</li></ul><p></p><ul style="display: flex;"><li style="flex:1">Universitat Karlsruhe (TH) </li><li style="flex:1">¨</li></ul><p></p><p>Formal Systems II </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">1 / 26 </li></ul><p></p><p>Fixed Point Theory </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">2 / 26 </li></ul><p></p><p>Fixed Points Definition </p><p>Definition </p><p>Let f : P(G) → P(G) be a set valued function and Z a subset of G. <br>1. Z is called a fixed point of f if f(Z) = Z . 2. Z is called the least fixed point of f is Z is a fixed point and for all other fixed points U of f the relation Z ⊆ U is true. </p><p>3. Z is called the greatest fixed point of f is Z is a fixed point and for all other fixed points U of f the relation U ⊆ Z is true. </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">3 / 26 </li></ul><p></p><p>Finite Fixed Point Lemma </p><p>Let G be an arbitrary set, Let P(G) denote the power set of a set G. A function f : P(G) → P(G) is called monotone of for all X, Y&nbsp;⊆ G </p><p>X ⊆ Y ⇒ f(X) ⊆ f(Y ) </p><p>Let f : P(G) → P(G) be a monotone function on a finite set G. <br>1. There is a least and a greatest fixed point of f. </p><p>S</p><p>2. <sub style="top: 0.2688em;">n≥1 </sub>f<sup style="top: -0.3299em;">n</sup>(∅) is the least fixed point of f. </p><p>T</p><p>3. <sub style="top: 0.2688em;">n≥1 </sub>f<sup style="top: -0.3299em;">n</sup>(G) is the greatest fixed point of f. </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">4 / 26 </li></ul><p></p><p>Proof </p><p>of part (2) of the finite fixed point Lemma </p><p>Monotonicity of f yields </p><p>∅ ⊆ f(∅) ⊆ f<sup style="top: -0.3753em;">2</sup>(∅) ⊆ . . . ⊆ f<sup style="top: -0.3753em;">n</sup>(∅) ⊆ . . . </p><p>Since G is finite there must be an i such that f<sup style="top: -0.3298em;">i</sup>(∅) = f<sup style="top: -0.3298em;">i+1</sup>(∅). </p><p>S</p><p>Then Z = <sub style="top: 0.2688em;">n≥1 </sub>f<sup style="top: -0.3299em;">n</sup>(∅) = f<sup style="top: -0.3299em;">i</sup>(∅) is a fixed point of f: </p><p>f(Z) = f(f<sup style="top: -0.3753em;">i</sup>(∅)) = f<sup style="top: -0.3753em;">i+1</sup>(∅) = f<sup style="top: -0.3753em;">i</sup>(∅) = Z </p><p>Let U be another fixed point of f. From ∅ ⊆ U be infer by monotonicity of f at first f(∅) ⊆ f(U) = U. By induction on n we conclude f<sup style="top: -0.3299em;">n</sup>(∅) ⊆ U for all n. Thus also Z = f<sup style="top: -0.3299em;">i</sup>(∅) ⊆ U. </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">5 / 26 </li></ul><p></p><p>Continuous Functions </p><p>Definition </p><p>A function f : P(G) → P(G) is called <br>1. ∪-continuous (upward continuous), if for every ascending sequence </p><p>M<sub style="top: 0.1363em;">1 </sub>⊆ M<sub style="top: 0.1363em;">2 </sub>⊆ . . . ⊆ M<sub style="top: 0.1363em;">n </sub>⊆ . . . </p><p></p><ul style="display: flex;"><li style="flex:1">[</li><li style="flex:1">[</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">f( </li><li style="flex:1">M<sub style="top: 0.1363em;">n</sub>) = </li><li style="flex:1">f(M<sub style="top: 0.1363em;">n</sub>) </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">n≥1 </li><li style="flex:1">n≥1 </li></ul><p></p><p>2. ∩-continuous (downward continuous) , if for every descending </p><p>sequence M<sub style="top: 0.1363em;">1 </sub>⊇ M<sub style="top: 0.1363em;">2 </sub>⊇ . . . ⊇ M<sub style="top: 0.1363em;">n </sub>⊇ . . . </p><p></p><ul style="display: flex;"><li style="flex:1">\</li><li style="flex:1">\</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">f( </li><li style="flex:1">M<sub style="top: 0.1363em;">n</sub>) = </li><li style="flex:1">f(M<sub style="top: 0.1363em;">n</sub>) </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">n≥1 </li><li style="flex:1">n≥1 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">6 / 26 </li></ul><p></p><p>Fixed Points For Continuous Functions </p><p>Let f : P(G) → P(G) be an upward continuous functions and g : P(G) → P(G) a downward continuous function. </p><p>The for all M, N&nbsp;∈ P(G) such that M ⊆ f(M) and g(N) ⊆ N the following is true. </p><p>S</p><p>1. <sub style="top: 0.2688em;">n≥1 </sub>f<sup style="top: -0.3299em;">n</sup>(M) is the least fixed point of f containing M, </p><p>T</p><p>2. <sub style="top: 0.2688em;">n≥1 </sub>g<sup style="top: -0.3299em;">n</sup>(M) is the greatest fixed point of g contained in M. </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">7 / 26 </li></ul><p></p><p>Proof of (1) </p><p>By monotonicity we first obtain </p><p>M ⊆ f(M) ⊆ f<sup style="top: -0.3754em;">2</sup>(M) ⊆ . . . ⊆ f<sup style="top: -0.3754em;">n</sup>(M) ⊆ . . . </p><p>Let P = <sub style="top: 0.2688em;">n≥1 </sub>f<sup style="top: -0.3299em;">n</sup>(M). This immediately gives M ⊆ P. Furthermore </p><p>S<br>S</p><p>f(P) = f( <sub style="top: 0.2688em;">n≥1 </sub>f<sup style="top: -0.3299em;">n</sup>(M)) </p><p>S</p><p>n+1 </p><p>=== P </p><p>f</p><p>(M) </p><p>by continuity since f(M) ⊆ f<sup style="top: -0.3298em;">2</sup>(M) </p><p>n≥1 </p><p>S</p><p><sub style="top: 0.2688em;">n≥1 </sub>f<sup style="top: -0.3298em;">n</sup>(M) </p><p>Assume now that Q is another fixed point of f satisfying M ⊆ Q. By Monotonicity and the fixed point property f(M) ⊆ f(Q) = Q and furthermore for every n ≥ 1 also f<sup style="top: -0.3298em;">n</sup>(M) ⊆ Q. </p><p>S</p><p>Thus we obtain P = <sub style="top: 0.2687em;">n≥1 </sub>f<sup style="top: -0.3299em;">n</sup>(M) ⊆ Q </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">8 / 26 </li></ul><p></p><p>Knaster-Tarski-Fixed-Points Theorem </p><p>Let f : P(G) → P(G) be a monotone function. Then f has a least and a greatest fixed point. <br>Note, G need not be finite. </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">9 / 26 </li></ul><p></p><p>Proof </p><p>Fixed Point </p><p>Let L = {S ⊆ G | f(S) ⊆ S}, e.g., G ∈ L. </p><p>T</p><p>Let U = L. Show f(U) = U! </p><p>For all S ∈ L by the property of an intersection: U ⊆ S. By monotonicity and definition of L f(U) ⊆ f(S) ⊆ S. </p><p>T</p><p>Thus f(U) ⊆ L = U and we have already established half of our claim. By monotonicity f(U) ⊆ U implies f(f(U)) ⊆ f(U) which yields f(U) ∈ L and futhermore U ⊆ f(U). </p><p>We thus have indeed U = f(U). </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">10 / 26 </li></ul><p></p><p>Proof </p><p>Least Fixed Point </p><p>Now assume W is another fixed point of f,i.e., f(W) = W. This yields W ∈ L= {S ⊆ G | f(S) ⊆ S} and </p><p>T</p><p>U = L ⊆ W. </p><p>Thus U is the least fixed point of f. Following the same line of argument one can show that </p><p>S</p><p>{S ⊆ G | S ⊆ f(S)} is the greatest fixed point of f. </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">11 / 26 </li></ul><p></p><p>CTL Model Checking <br>Algorithm </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">12 / 26 </li></ul><p></p><p>Two Auxiliary Concepts </p><p>Let T = (S, R, v) be a transition system and F an CTL formula. The set </p><p>τ(F) = {s ∈ S | s |= F} </p><p>is called the characteristic region of F in T . The universal and existential next step functions f<sub style="top: 0.1408em;">AX</sub>, f<sub style="top: 0.1408em;">EX </sub>: P(S) → P(S) are defined by </p><p>f<sub style="top: 0.1408em;">AX</sub>(Z) = {s ∈ S | for all t with sRt we get t ∈ Z} f<sub style="top: 0.1407em;">EX</sub>(Z) = {s ∈ S | there exists a t with sRt and t ∈ Z} </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">13 / 26 </li></ul><p></p><p>CTL Model Checking Algorithm </p><p>Let T = (S, R, v) be a transition system and F an CTL formula. τ(F) is computed by the following high-level recursive algorithm: </p><p>123456789</p><p>τ(p) </p><p>==========</p><p>{s ∈ S | v(s, p) = 1} </p><p>τ(F<sub style="top: 0.1364em;">1</sub>) ∩ τ)F<sub style="top: 0.1364em;">2</sub>) </p><p>τ(F<sub style="top: 0.1364em;">1 </sub>∧ F<sub style="top: 0.1364em;">2</sub>) τ(F<sub style="top: 0.1364em;">1 </sub>∨ F<sub style="top: 0.1364em;">2</sub>) </p><p>τ(¬F<sub style="top: 0.1363em;">1</sub>) τ(F<sub style="top: 0.1364em;">1</sub>) ∪ τ(F<sub style="top: 0.1364em;">2</sub>) </p><p>S \ τ(F<sub style="top: 0.1363em;">1</sub>) </p><p>τ(A(F<sub style="top: 0.1363em;">1 </sub>U F<sub style="top: 0.1363em;">2</sub>)) τ(E(F<sub style="top: 0.1363em;">1 </sub>U F<sub style="top: 0.1363em;">2</sub>)) τ(AFF<sub style="top: 0.1364em;">1</sub>) τ(EFF<sub style="top: 0.1364em;">1</sub>) lfp[τ(F<sub style="top: 0.1363em;">2</sub>) ∪ (τ(F<sub style="top: 0.1363em;">1</sub>) ∩ f<sub style="top: 0.1407em;">AX</sub>(Z))] lfp[τ(F<sub style="top: 0.1363em;">2</sub>) ∪ (τ(F<sub style="top: 0.1363em;">1</sub>) ∩ f<sub style="top: 0.1408em;">EX</sub>(Z)] lfp[τ(F<sub style="top: 0.1364em;">1</sub>) ∪ f<sub style="top: 0.1407em;">AX</sub>(Z)] lfp[τ(F<sub style="top: 0.1364em;">1</sub>) ∪ f<sub style="top: 0.1408em;">EX</sub>(Z)] gfp[τ(F<sub style="top: 0.1363em;">1</sub>) ∩ f<sub style="top: 0.1407em;">EX</sub>(Z)] gfp[τ(F<sub style="top: 0.1363em;">1</sub>) ∩ f<sub style="top: 0.1407em;">AX</sub>(Z)] τ(EGF<sub style="top: 0.1363em;">1</sub>) </p><p>10 τ(AGF<sub style="top: 0.1363em;">1</sub>) </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">14 / 26 </li></ul><p></p><p>Correctness Proof </p><p>Case 10&nbsp;AG F<sub style="top: 0.0831em;">1 </sub></p><p>By definition </p><p>τ(AG F<sub style="top: 0.1363em;">1</sub>) = {s ∈ S | s ∈ τ(F<sub style="top: 0.1363em;">1</sub>) and h ∈ τ(AG F<sub style="top: 0.1363em;">1</sub>) for all h with gRh} </p><p>Using Definition of the universal next step function: </p><p>τ(AG F<sub style="top: 0.1363em;">1</sub>) = τ(F<sub style="top: 0.1363em;">1</sub>) ∩ f<sub style="top: 0.1407em;">AX</sub>(τ(AG F<sub style="top: 0.1363em;">1</sub>)) </p><p>So, τ(AG F<sub style="top: 0.1363em;">1</sub>) is a fixed point of the function τ(F<sub style="top: 0.1363em;">1</sub>) ∩ f<sub style="top: 0.1407em;">AX</sub>(Z). It remains to see that it is the greatest fixed point. </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">15 / 26 </li></ul><p></p><p>Correctness Proof </p><p>Case 10&nbsp;AG F<sub style="top: 0.0831em;">1 </sub>(continued) </p><p>Let H be another fixed point, i.e., H = τ(F<sub style="top: 0.1363em;">1</sub>) ∩ f<sub style="top: 0.1407em;">AX</sub>(H). We need to show H ⊆ τ(AG F<sub style="top: 0.1363em;">1</sub>)). Consider g<sub style="top: 0.1363em;">0 </sub>∈ H with the aim of showing that for all n ≥ 0 and all g<sub style="top: 0.1363em;">i </sub>satisfying g<sub style="top: 0.1364em;">i−1</sub>Rg<sub style="top: 0.1364em;">i </sub>for all 1 ≤ i ≤ n we obtain g<sub style="top: 0.1364em;">n </sub>∈ τ(F<sub style="top: 0.1364em;">1</sub>). </p><p>Observe H = τ(F<sub style="top: 0.1363em;">1</sub>) ∩ f<sub style="top: 0.1407em;">AX</sub>(H) ⊆ τ(F<sub style="top: 0.1363em;">1</sub>). Thus it suffices to show for all n ≥ 0 that g<sub style="top: 0.1363em;">n </sub>∈ H. For n = 0 that is true by assumptions. Assume g<sub style="top: 0.1363em;">n−1 </sub>∈ H. g<sub style="top: 0.1364em;">n−1 </sub>∈ H ⊆ f<sub style="top: 0.1407em;">AX</sub>(H) = {g | for all h with gRh we have h ∈ H}. </p><p>Thus g<sub style="top: 0.1363em;">n </sub>∈ H. </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">16 / 26 </li></ul><p></p><p>Correctness Proof </p><p>Case 6 E(F<sub style="top: 0.0831em;">1 </sub>U F<sub style="top: 0.0831em;">2</sub>) </p><p>By definition </p><p>τ(E(F<sub style="top: 0.1364em;">1 </sub>U F<sub style="top: 0.1364em;">2</sub>)) = {g ∈ S | s |= F<sub style="top: 0.1364em;">2 </sub>or s |= F<sub style="top: 0.1364em;">1 </sub>and </p><p>there exists h with gRh and h |= F<sub style="top: 0.1363em;">2</sub>} <br>Using next step function: </p><p>τ(E(F<sub style="top: 0.1364em;">1 </sub>U F<sub style="top: 0.1364em;">2</sub>)) = τ(F<sub style="top: 0.1364em;">2</sub>) ∪ (τ(F<sub style="top: 0.1364em;">1</sub>) ∩ f<sub style="top: 0.1407em;">EX</sub>(τ(E(F<sub style="top: 0.1364em;">1 </sub>U F<sub style="top: 0.1364em;">2</sub>))) </p><p>Thus τ(E(F<sub style="top: 0.1363em;">1 </sub>U F<sub style="top: 0.1363em;">2</sub>)) is a fixed point of the function </p><p>τ(F<sub style="top: 0.1363em;">2</sub>) ∪ (τ(F<sub style="top: 0.1363em;">1</sub>) ∩ f<sub style="top: 0.1407em;">EX</sub>(Z)). </p><p>It remains to show that it is the least fixed point. </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">17 / 26 </li></ul><p></p><p>Correctness Proof </p><p>Case 6 E(F<sub style="top: 0.0831em;">1 </sub>U F<sub style="top: 0.0831em;">2</sub>) (continued) </p><p>Consider H ⊆ S with H = τ(F<sub style="top: 0.1363em;">2</sub>) ∪ (τ(F<sub style="top: 0.1363em;">1</sub>) ∩ f<sub style="top: 0.1407em;">EX</sub>(H)). We need τ(E(F<sub style="top: 0.1364em;">1 </sub>U F<sub style="top: 0.1364em;">2</sub>)) ⊆ H. Fix g<sub style="top: 0.1363em;">0 </sub>∈ τ(E(F<sub style="top: 0.1363em;">1 </sub>U F<sub style="top: 0.1363em;">2</sub>)), try to arrive at g<sub style="top: 0.1363em;">0 </sub>∈ H. There is an n ∈ N and there are g<sub style="top: 0.1363em;">i </sub>for 1 ≤ i ≤ n satisfying </p><p>1. g<sub style="top: 0.1363em;">i</sub>Rg<sub style="top: 0.1363em;">i+1 </sub>for all 0 ≤ i &lt; n. </p><p>2. g<sub style="top: 0.1363em;">n </sub>∈ τ(F<sub style="top: 0.1363em;">2</sub>). </p><p>3. g<sub style="top: 0.1363em;">i </sub>∈ τ(F<sub style="top: 0.1363em;">1</sub>) for all 0 ≤ i &lt; n. </p><p>We set out to prove g<sub style="top: 0.1363em;">n </sub>∈ H by induction on n. </p><p>n = 0&nbsp;Since H = τ(F<sub style="top: 0.1364em;">2</sub>) ∪ (τ(F<sub style="top: 0.1364em;">1</sub>) ∩ f<sub style="top: 0.1407em;">EX</sub>(H)) ⊇ τ(F<sub style="top: 0.1364em;">2</sub>) and </p><p>g<sub style="top: 0.1364em;">0 </sub>= g<sub style="top: 0.1364em;">n </sub>∈ τ(F<sub style="top: 0.1364em;">2</sub>). </p><p>n − 1 Ã n By induction hypothesis we have g<sub style="top: 0.1363em;">1 </sub>∈ H Since g<sub style="top: 0.1363em;">0 </sub>∈ τ(F<sub style="top: 0.1363em;">1</sub>) and g<sub style="top: 0.1363em;">0</sub>Rg<sub style="top: 0.1363em;">1 </sub>we obtain g<sub style="top: 0.1363em;">0 </sub>∈ (τ(F<sub style="top: 0.1363em;">1</sub>) ∩ f<sub style="top: 0.1407em;">EX</sub>(H)) ⊆ H and thus also g<sub style="top: 0.1363em;">0 </sub>∈ H. </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">18 / 26 </li></ul><p></p><p>CTL Model Checking <br>Example </p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">19 / 26 </li></ul><p></p><p>Transition System </p><p>s<sub style="top: 0.0782em;">0 </sub>n<sub style="top: 0.0782em;">1</sub>n<sub style="top: 0.0782em;">2 </sub></p><p></p><ul style="display: flex;"><li style="flex:1">s<sub style="top: 0.0782em;">1 </sub></li><li style="flex:1">s<sub style="top: 0.0782em;">5 </sub></li><li style="flex:1">n<sub style="top: 0.0782em;">1</sub>t<sub style="top: 0.0782em;">2 </sub></li><li style="flex:1">t<sub style="top: 0.0782em;">1</sub>n<sub style="top: 0.0782em;">2 </sub></li></ul><p></p><ul style="display: flex;"><li style="flex:1">s<sub style="top: 0.0782em;">3 </sub></li><li style="flex:1">s<sub style="top: 0.0782em;">8 </sub></li></ul><p></p><ul style="display: flex;"><li style="flex:1">s<sub style="top: 0.0782em;">2 </sub>c<sub style="top: 0.0782em;">1</sub>n<sub style="top: 0.0782em;">2 </sub></li><li style="flex:1">n<sub style="top: 0.0782em;">1</sub>c<sub style="top: 0.0782em;">2 </sub>s<sub style="top: 0.0782em;">6 </sub></li><li style="flex:1">t<sub style="top: 0.0782em;">1</sub>t<sub style="top: 0.0782em;">2 </sub></li><li style="flex:1">t<sub style="top: 0.0782em;">1</sub>t<sub style="top: 0.0782em;">2 </sub></li></ul><p></p><ul style="display: flex;"><li style="flex:1">s<sub style="top: 0.0782em;">4 </sub></li><li style="flex:1">s<sub style="top: 0.0782em;">7 </sub></li></ul><p></p><ul style="display: flex;"><li style="flex:1">t<sub style="top: 0.0782em;">1</sub>c<sub style="top: 0.0782em;">2 </sub></li><li style="flex:1">c<sub style="top: 0.0782em;">1</sub>t<sub style="top: 0.0782em;">2 </sub></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Prof. P.H. Schmitt </li><li style="flex:1">CTLMC </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Summer 2009 </li><li style="flex:1">20 / 26 </li></ul><p></p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    26 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us