Harmonic Oscillator,A,A , Fock Space, Identicle Particles, Bose/Fermi

Harmonic Oscillator,A,A , Fock Space, Identicle Particles, Bose/Fermi

ho_fs_ident.nb:10/14/04::22:47:34 1 HarmonicOscillator,a,a†,FockSpace,IdenticleParticles, Bose/Fermi ThissetoflecturesintroducesthealgebraictreatmentoftheHarmonicOscillatorandappliestheresulttoastring,a prototypicalsystemwithalargenumberofdegreesoffreedom.ThatsystemisusedtointroduceFockspace,discuss systemsofidenticleparticlesandintroduceBose/Fermiannihilationandcreationoperators. Á HarmonicOscillator ü ClassicSHO TheclassicalHamiltonianforthesimpleharmonicoscillatoris 1 2 k 2 1 2 mw2 2 H = ÅÅÅÅÅÅÅÅÅ2 m p + ÅÅÅÅ2 x = ÅÅÅÅÅÅÅÅÅ2 m p + ÅÅÅÅÅÅÅÅÅÅÅÅ2 x Thisleadstosimpleharmonicmotionwithfrequencyw = k m . r s ü QM:wavemechanics ∑ Makethereplacementp = -i ÅÅÅÅ∑xÅÅÅ ,andsolveforthewavefunctions.Forexample,Merzbacherchapter5. ü QM:operatorapproach Introduceraisingandloweringoperators( aanda† )andsolvesimplealgebraiceigenvalueproblem.Note:insome contexts(fieldtheory)a, a† arealsoknownasannihilationandcreationoperators. ü Setupofproblem,introductionofa, a†, and N ü ForconveniencesimplifyH Define:p' = ÅÅÅÅÅÅÅÅpÅÅÅÅÅÅÅ andx' = mw x,inwhichcaseH canberewrittenas mw r r w 2 2 H = ÅÅ2ÅÅÅ p' + x' + / ü Defineaanda† . Further,definetheoperator a = ÅÅÅÅ1ÅÅÅÅÅÅ x' + ip' 2 r + / andsincexandparehermitian,theadjointis a† = ÅÅÅÅ1ÅÅÅÅÅÅ x' - ip' . 2 r + / ho_fs_ident.nb:10/14/04::22:47:34 2 Alsonotethatx'andp'canberewrittenas x' = ÅÅÅÅ1ÅÅÅÅÅÅ a† + a andp' = ÅÅÅÅÅÅÅÅi ÅÅ a† - a . 2 2 r + / r + / Thecommutatorofaanda† is † 1 a, a = ÅÅ2ÅÅ x' + ip', x' - ip' = i p', x' = i p, x = 1 # ' # ' # ' # ' and † 1 1 2 2 1 2 2 1 a a = ÅÅ2ÅÅ x' - ip' x' + ip' = ÅÅ2ÅÅ x' + p' + i x', p' = ÅÅ2ÅÅ x' + p' - ÅÅ2ÅÅ † 1 1 2 2 1 2 2 1 a a = ÅÅÅÅ2 +x' + ip'/ +x' - ip'/ = ÅÅÅÅ2 +x' + p' - i#x', p''/ = ÅÅÅÅ2 + x' + p' / + ÅÅÅÅ2 + / + / + # '/ + / ü DefineN andrewriteH ItisconvenienttorecastH w 2 2 H = ÅÅ2ÅÅÅ p' + x' † 1 += w a a /+ ÅÅÅÅ2 1 = w+N + ÅÅÅÅ2 / + / wherethe"number"operatorisN = a† a.Itshouldbeobviousthat H, N = 0,andsoH andN canbesimultaneously diagonalized.Determiningthespectrumofenergyeigenstatescanbereclas# ' sifiedasdeterminingthespectrumofN . ü Thespectrumofstates Define n asthenormalizedeigenstatesofN ,andletitbeunderstoodthatthestatesarelabeledbytheeigenvalue,i.e. ? N n = n n ? ? ü Shownispositivedefinite Considerthequantity n N n = n n n = n. ; « « ? ; « ? Itisconvenienttodefine b = a n .SinceN = a† awealsohave ? ? n N n = n a† a n = b b ¥ 0. ; « « ? ; « « ? ; « ? Itfollowsthatnisrealandpositive-definite. ü Showthataisaloweringoperator. a, N = a a† a - a† a a # ' = +a a† / a -+ a† /a a = +a, a†/ a + / = #a ' ho_fs_ident.nb:10/14/04::22:47:34 3 Again,let b = a n ,sothat ? ? N b = N a n , ? = N?, a + a N n = +#-a +'a n n / ? = +n - 1 a n/ ? = +n - 1/ b ? + / ? i.e. b isananeigenstateofN ,witheigenvalue n - 1 ,or ? + / a n = cn n - 1 ? ? wherecn issomeasyetundeterminedcoefficient. Wecanevaluatecn byconsidering † 2 n = n N n = n a a n = cn , ; « « ? ; « « ? if whichgivescn = e n .Conventionallyf = 0,whichgives r a n = n n - 1 . r ? ? ü anda† isaraisingoperator † † † † Similarly N, a = a anda n = bn+1 n + 1 ,wherebn = n aswell.a actsasaraisingoperator- r # ' ? ? a† n = n + 1 n + 1 . r ? ? Itisoftenmoreconvenientinthisform.a† n - 1 = n n ,wherewecaneasilysee † † r N n = a a n = a n n - 1 = n n . ? ? r ? ? ? ? ü spectrum Sofarwehaveshowedhowtoconstructasetofstates n withnvaluesseparatedbyintegers.Thereare,however, manysuchsets,butonlyoneisaviablesetofstatesfortheSHO.Recallthatweha ? vetheconstraintthatn ¥ 0. Supposenisintheinterval 0, 1 .Thenoperatingwithawouldgiveastatewithn < 0,whichisnotallowed.Theonly possiblityisthatoperatingwith+ a/gives0,butthatwouldviolatetherelationforcn -unlessn = 0.Itseemstheonly possiblityisforntobeintegral.Inthiscasewecansatisfytheboundaryconditionbya 0 = 0 0 = 0.Thespectrum ofstatesisthengivenby n , n = 0, 1, 2. .. ? ? ? Thisseemsveryreasonable.AstheHamiltonianispositivedefinite,theexpectationvalueisrequiredtobepositive. 1 Evenwiththeextracontributionof ÅÅ2ÅÅ itisnotunreasonablethatNisalsopositive. Onecanbuildnormalizedstatesbyiterativeuseoftheraisingoperator. † n n = ÅÅÅÅÅÅÅÅÅÅÅÅa 0 + n/! ? r ? ho_fs_ident.nb:10/14/04::22:47:34 4 ü Matrixformforoperators H, N, a, a† .Itisstraightforwardtoexpresstheoperatorsinmatrixform(seeMerzbacher).H andN arediagonal.a anda† areoffdiagonal.e.g. ∫ 0 1 0 ∫ 1 0 1 0 ÅÅÅÅ 0 ∫ r r 2 L \ L 1 0 2 0 \ 3 M 0 0 2 0 ] M ] H = wL 0 ÅÅÅÅ 0 \,a = M ],x = M r r ],... M 2 ] M r ] M ] M ] M 0 0 0 3 ] M 0 2 0 3 ] M ª 0 ∏ ] M ] M r r ] M ] M ª r∏ ] M ª ∏ ] M ] M 0 0 ] M 0 3 ] N ^ MMM ] M r ] N ^ N ^ ora = S n n - 1 n . n r ? ; ü Usefulrelation Ausefulfactfordoingsomemanipulations(forexampleproblem2.18)is † ∑ † a, f a = ÅÅÅÅ∑aÅņÅÅÅ f a # + /' + / ∑ Thisissimilarto k, x = -i ÅÅÅÅ∑xÅÅÅ # ' Á FockSpace-"2ndquantization" Theharmonicoscillatorprovidesastartingpointfordiscussinganumberofmoreadvancedtopics,including multiparticlestates,identicleparticlesandfieldtheory. Asanintroduction,considertheproblemofquantizingaclassicalstring(e.g.aguitarstring).Thisisdonebytreating theoscillatingmodesofthestringasasetofharmonicoscillators.EachH.O.canbequantized,sothatthequantum stateofthestringisgivenbyspecifyingthequantumstateofeachoscillator.Thisissometimereferredtoas"second quantization".Presumablythetermismeanttosuggestthatthefirstquantizationisdeterminingtheeigenmodesofthe system,andthesecondquantizationisdeterminingtheexcitationlevelofeachmode. Analternativelanguagefordiscussingthequantizedstringistolabeltheexcitationsoftheindividualmodesas particles.Thislanguagenaturallycarriesovertoanynumberofclassicalsystemsthatexhibitoscillatorybehavior, includingtransversephononsonastring,longitudinalphononsthroughamedium,andphotonsasquantizedoscillations oftheelectromagneticradiation.TheseparticlesareallexamplesofBosons.Bosesystemsmayexhibitalargedegreeof excitation.Intheparticlelanguagethisisequivalenttodiscussingasystemwithalargenumberofparticles.the particlesareidenticle,althoughtheymaybefoundindifferentstates.Accordingly,itisnaturaltodiscussthequantum theoryofidenticalparticlesatthistime.TheconceptofannihilationandcreationoperatorsforBosons,canbeextended todescribeFermisystemsaswell. ü Quantizesimplestring Theenergyforaclassicalstringisgivenbythesumofthekineticandpotentialenergies. E = T + U ho_fs_ident.nb:10/14/04::22:47:34 5 Tobespecific,considerboundaryconditionswherethestringisstretchedbetweentwofixedendpointsatx = 0, L , thestringhasmassdensityr,andtensionk.Letthepositionofstringbey x, t .Then + / + / r L ° 2 T = ÅÅÅÅÅ2 0 y ¼ k L 2 U = ÅÅÅÅ2 0 y' ¼ ü Expansionineigenfunctions Next, expandyintermsofnormalizedeigenfunctionsforthestring. 2 n p x y x, t = S yn t ÅÅÅÅÅ Sin ÅÅÅÅÅÅÅÅÅÅÅ n L L + / + / + / Then,thekineticandpotentialenergytermscanbereexpressedasasumovermodes. L L ° 2 ° 2 n p x ° 2 m p x 0 y = S yn ÅÅÅÅÅL Sin ÅÅÅÅÅÅÅÅÅÅÅL S ym ÅÅÅÅÅL Sin ÅÅÅÅÅÅÅÅÅÅÅÅÅL 0 n m - + /1 - + /1 ¼ à ° ° 2 L n p x m p x = S yn ym ÅÅÅÅÅ Sin ÅÅÅÅÅÅÅÅÅÅÅ Sin ÅÅÅÅÅÅÅÅÅÅÅÅÅ n,m L 0 L L ° ° ¼ + / + / = S yn ym dnm n,m ° 2 = S yn n L L y'2 = S y ÅÅÅÅÅ2 ÅÅÅÅÅÅÅÅn p Cos ÅÅÅÅÅÅÅÅÅÅÅn p x S y ÅÅÅÅÅ2 ÅÅÅÅÅÅÅÅÅm p Cos ÅÅÅÅÅÅÅÅÅÅÅÅÅm p x 0 n L L L m L L L 0 n m - + / + /1 - + / + /1 ¼ à 2 n p m p L n p x m p x = S yn ym ÅÅÅÅÅ ÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅ Cos ÅÅÅÅÅÅÅÅÅÅÅ Cos ÅÅÅÅÅÅÅÅÅÅÅÅÅ n,m L L L 0 L L n p+ m/ p+ / ¼ + / + / = S yn ym ÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅ dnm n,m L L n p 2 + 2/ + / = S ÅÅÅÅÅÅÅÅ yn n L + 2 / 2 = S kn yn n ü string=sumoverharmonicoscillators TheseresultscanbeusedtoreexpresstheHamiltonianasasumoverharmonicoscillators. 1 ° 2 2 2 H = ÅÅÅÅ S r yn + k kn yn 2 n wn 2 2 † 1 = S ÅÅÅÅÅÅÅÅ pn + qn = S wn an an + ÅÅÅÅ n 2 n 2 + / + / where ho_fs_ident.nb:10/14/04::22:47:34 6 ° pn = yn r wn r qn = yn t r wn 1r an = ÅÅÅÅÅÅÅÅÅÅ qn + i pn 2 r † 1 + / a = ÅÅÅÅÅÅÅÅÅÅ qn - i pn n 2 r + / wn = r k kn = c kn = w0 n rc p w0 = ÅÅÅÅÅÅÅÅL s ü Fockspace:basisstatesforthestring Fromtheabovediscussion,acontinuousstringcanbedescribedbyalarge(infinite)numberofQMharmonic oscillators,oneharmonicoscillatorforeacheigenfunctiondescribingthestring'smotion.Denotetheoscillatorsbythe subscripti .ThebasisstatesforeachoscillatorcanbechosentobetheeigenstatesofthenumberoperatorNi ,andthe basisstatesforthestringmaybetakentobeaproductoftheindividualoscillatorbasisstates.Astringbasisstatecan thereforebedescribedbyaninfinitedimensionalvectorspecifyingthestateofeachoftheharmonicoscillators. n = n1 ≈ n2 ≈ n3 ≈ ... = n1, n2, n3, ... ¹¶? ? ? ? ? andeachoftheni maybeanon-negativeinteger.Anarbitrarystateofthestring a wouldbegivenbyasuperposition ¶ ¶ ¶ ? a? = S S S ... cn n? n1=0 n2=0 n3=0 ¹¶ ¹¶ wherethecn arecomplexnumbers. ¹¶ Thelowestenergystateofthestringisonewherealltheni are0.Notethatthelowestenergystatehasinfiniteenergy, wi fromsummingupallthezeropointenergiesforeachoftheindividualoscillators,E0 = S ÅÅÅÅÅÅÅ = ¶.Itisconventionalto i 2 ignorethisinfinity,notingthatabsoluteenergyscalesarenotobservable,onlyrelativeenergyscales.Withthis subtraction,theenergyofastringstateis E = n H n = n Si Ni wi n = Si ni wi ;¹¶ « « ¹¶? ;¹¶ « « ¹¶? Thebasisstatesofthestringcanbebuiltupfromthegroundstatebyoperatingwithappropriateraisingoperators.For example, † 1, 0, 0, ... = a1 0, 0, 0. .. ? † ? Theoperatora1 raisestheexcitationlevelofthelowestmodeby1. Itisimportanttodistinguishtheeffectofraisingtheexcitationamplitudeofagivenmode,fromtheeffectofshifting excitationstoahighermode.Inthecontextofaguitarstring,shiftingtoahighermodecorrespondstoahigher frequencyorahigher"note".Increasingtheexcitationofagivenmode,correspondstomakingthatnote"louder".For example,supposethestringisinthen1 = 1state, 1, 0, 0, ... .Theenergyisw0 .Wecanincreasetheenergyto2 w0 nd

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    15 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us