Lecture 1 Mathematical Preliminaries

Lecture 1 Mathematical Preliminaries

<p>Lecture 1 Mathematical Preliminaries </p><p>A. Banerji July 26, 2016 </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">1 / 27 </li></ul><p></p><p>Outline </p><p>1</p><p>Preliminaries </p><p>Sets Logic Sets and Functions Linear Spaces </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">2 / 27 </li></ul><p></p><p>Preliminaries </p><p>Sets </p><p>Basic Concepts </p><p>Take as understood the notion of a set. Usually use upper case letters for sets and lower case ones for their elements. Notation. </p><p>a ∈ A, b ∈/ A. </p><p>A ⊆ B if every element of A also belongs to B. A = B if A ⊆ B and B ⊆ A are both true. </p><p>A ∪ B = {x|x ∈ A or x ∈ B}. The ‘or’ is inclusive of ‘both’. A ∩ B = {x|x ∈ A and x ∈ B}. What if A and B have no common elements? To retain meaning, we invent the concept of an empty set, ∅. </p><p>A ∪ ∅ = A, A ∩ ∅ = ∅. For the latter, note that there’s no element in common between the sets A and ∅ because the latter does not have any elements. </p><p>∅ ⊆ A, for all A. Every element of ∅ belongs to A is <strong>vacuously true </strong>since ∅ has no elements. This brings us to some logic. </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">3 / 27 </li></ul><p></p><p>Preliminaries </p><p>Logic </p><p>Logic </p><p>Statements or propositions must be either true or false. P ⇒ Q. If the statement P is true, then the statement Q is true. But if P is false, Q may be true or false. For example, on real numbers, let P = x &gt; 0 and Q = x<sup style="top: -0.3299em;">2 </sup>&gt; 0. If P is true, so is Q, but Q may be true even if P is not, e.g. x = −2. We club these together and say P ⇒ Q. </p><p>Let P = x<sup style="top: -0.3299em;">2 </sup>&lt; 0 and Q = x = 5. Then P ⇒ Q is vacuously true. ∼ Q ⇒∼ P is the contrapositive of P ⇒ Q. </p><p>For example: If x<sup style="top: -0.3299em;">3 </sup>≤ 0, then x ≤ 0 is the contrapositive of “if x &gt; 0, then x<sup style="top: -0.3298em;">3 </sup>&gt; 0 ". </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">4 / 27 </li></ul><p></p><p>Preliminaries </p><p>Logic </p><p>Logic </p><p>Claim. A statement and its contrapositive are equivalent. </p><p>Proof. </p><p>Suppose P ⇒ Q is true. Suppose Q is false. Then P must be false, for if not, then via P ⇒ Q, Q would be true, contradicting our assumption that Q is false. On the other hand, suppose P ⇒ Q is false. It follows that P is true and Q is false (for if P is false, then P ⇒ Q is vacuously true). But then, ∼ Q ⇒∼ P cannot be true. </p><p>Definition </p><p>Q ⇒ P is called the converse of the statement P ⇒ Q. No relationship between a statement and its converse. e.g., if x &gt; 0 then x<sup style="top: -0.3299em;">2 </sup>&gt; 0 is true, but its converse is not. On the other hand, if some statement and its converse are both true, we say P if and only if Q or </p><p>P ⇔ Q. </p><p>5 / 27 </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p>July 26, 2016 </p><p>Preliminaries </p><p>Logic </p><p>Quantifiers and Negation </p><p>2 logical quantifiers: ‘for all’ and ‘there exists’. P : For all a ∈ A, property Π(a) holds. The negation of P (i.e. ∼ P) is the statement: There exists at least one a ∈ A s.t. property Π(a) does not hold. e.g. P : For every x ∈ &lt;, x<sup style="top: -0.3299em;">2 </sup>&gt; 0. The negation of P : There exists x ∈ &lt; s.t. x<sup style="top: -0.3299em;">2 </sup>≤ 0. </p><p>Q : There exists b ∈ B s.t. property Θ(b) holds. ∼ Q : For all b ∈ B, property Θ(b) does not hold. </p><p><strong>Note. Order of quantifiers matters</strong>. e.g. ‘for all x &gt; 0, there exists </p><p>y &gt; 0 s.t. y<sup style="top: -0.3299em;">2 </sup>= x’, says that every positive real has a positive square root. This is not the same as ‘there exists y &gt; 0 s.t. for all x &gt; 0, y<sup style="top: -0.3299em;">2 </sup>= x’, which says some number y is the common square root of every positive real. </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">6 / 27 </li></ul><p></p><p>Preliminaries </p><p>Logic </p><p>Logic </p><p>Let Π(a, b) be a property defined on elements a and b in sets A and B respectively. Let P : For every a ∈ A there exists b ∈ B s.t. Π(a, b) holds. Then, ∼ P : There exists a ∈ A s.t. for all b ∈ B, Π(a, b) does not hold. </p><p><strong>Necessary and Sufficient Conditions </strong></p><p>Let P ⇒ Q be true. We say Q is necessary for P. Or P is sufficient for Q. So, if P ⇔ Q, P is necessary and sufficient for Q. </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">7 / 27 </li></ul><p></p><p>Preliminaries </p><p>Sets and Functions </p><p>Sets </p><p>Set Difference: A − B = {x|x ∈ A and x ∈/ B}. Also called the complement of B relative to A. More familiar is the </p><p>notion of the <strong>universal set </strong>X, and X − B = B<sup style="top: -0.3299em;">c</sup>. <strong>Some set-theoretic ‘laws’ </strong></p><p>Distributive Laws </p><p>(i) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (ii) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) </p><p>Proof. </p><p>(i) Suppose x ∈ LHS. So, x ∈ A and x ∈ (B ∪ C). So x ∈ A and either x ∈ B or x ∈ C or both. So, either x ∈ (A ∩ B) or x ∈ (A ∩ C) (or both). Converse? </p><p>DeMorgan’s Laws (i) A − (B ∪ C) = (A − B) ∩ (A − C) or more familiarly, </p><p>(B ∪ C)<sup style="top: -0.3299em;">c </sup>= B<sup style="top: -0.3299em;">c </sup>∩ C<sup style="top: -0.3299em;">c </sup></p><p>(ii) A − (B ∩ C) = (A − B) ∪ (A − C) or (B ∩ C)<sup style="top: -0.3299em;">c </sup>= B<sup style="top: -0.3299em;">c </sup>∪ C<sup style="top: -0.3299em;">c</sup>. </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">8 / 27 </li></ul><p></p><p>Preliminaries </p><p>Sets and Functions </p><p>Sets </p><p><strong>Arbitrary Unions and Intersections </strong></p><p>Let A be a collection of sets. Then </p><p>S</p><p>= {x|x ∈ A for at least one A ∈ A} </p><p>A∈A A∈A </p><p>T</p><p>= {x|x ∈ A for every A ∈ A} </p><p><strong>Cartesian Products </strong></p><p>We’ll say (a, b) is an <strong>ordered pair </strong>if the order of writing these 2 objects matters: i.e. if (a, b) and (b, a) are not the same thing. (Think of points on the plane). Alternatively, we can <strong>derive </strong>the notion of ordered pair from the more primitive notion of a set as follows. Define (a, b) = {{a}, {a, b}}. On the right is a set of 2 sets; the first of these is the singleton that we want to be ‘first’ in the ordered pair. The 2nd is the set of both objects (obviously, {a, b} = {b, a}, so that alone cannot be sufficient to define an ordered pair). Thus (b, a) is defined to be the set {{b}, {a, b}}. Let A and B be sets. We then have </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">9 / 27 </li></ul><p></p><p>Preliminaries </p><p>Sets and Functions </p><p>Functions </p><p>Definition </p><p>The Cartesian product A × B = {(x, y)|x ∈ A and y ∈ B}. We can formally define a function using the notion of Cartesian product, as follows. Let C, D be 2 sets. A rule of assignment r is a subset of C × D s.t. elements of C appear as first coordinates of ordered pairs belonging to r at most once. The set A of elements of C appearing as first coordinates in r is called the domain of r. The set of elements of D comprising 2nd coordinates of r is called the image set of r. Then </p><p>Definition </p><p>A function f is a rule of assignment r along with a set B that contains the image set of r. </p><p>A is called the domain of f and the image set of r is called the image set or range of f. </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">10 / 27 </li></ul><p></p><p>Preliminaries </p><p>Sets and Functions </p><p>Functions </p><p><strong>We write </strong>f : A → B <strong>and think of </strong>f <strong>as a rule carrying every element </strong>a ∈ A <strong>to exactly one element </strong>b ∈ B<strong>. </strong></p><p>Examples. 1. f : &lt; → &lt; defined by f(x) = x<sup style="top: -0.3299em;">2</sup>, ∀x ∈ &lt;. </p><p>2</p><p>2. Using the notation &lt; for the Cartesian product &lt; × &lt; (representing </p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p>the plane), let f : &lt; →&nbsp;&lt; be defined by f(x<sub style="top: 0.1601em;">1</sub>, x<sub style="top: 0.1601em;">2</sub>) = x<sub style="top: 0.1601em;">1</sub>x<sub style="top: 0.1601em;">2</sub>, ∀(x<sub style="top: 0.1601em;">1</sub>, x<sub style="top: 0.1601em;">2</sub>) ∈ &lt;&nbsp;. </p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p>3. g : &lt; →&nbsp;&lt; defined by g(x<sub style="top: 0.1601em;">1</sub>, x<sub style="top: 0.1601em;">2</sub>) = (x<sub style="top: 0.1601em;">1</sub>x<sub style="top: 0.1601em;">2</sub>, x<sub style="top: 0.1601em;">1 </sub>+ x<sub style="top: 0.1601em;">2</sub>), ∀(x<sub style="top: 0.1601em;">1</sub>, x<sub style="top: 0.1601em;">2</sub>) ∈ &lt;&nbsp;. </p><p>4. <strong>Arbitrary Cartesian Products</strong>. We first formally define <strong>n-tuples </strong>in </p><p>terms of functions. Let X be a set and define the function x : {1, ..., n} → X. This function is called an n-tuple of elements of X. It’s image at i ∈ {1, ..., n}, x(i), is written as x<sub style="top: 0.1601em;">i</sub>. The n-tuple is written as (x<sub style="top: 0.1601em;">1</sub>, ..., x<sub style="top: 0.1363em;">n</sub>). The order counts. We write X<sup style="top: -0.3299em;">n </sup>for the set of all n-tuples of </p><p>n</p><p>elements of X. The leading example is &lt; , n-dimensional Euclidean space. </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">11 / 27 </li></ul><p></p><p>Preliminaries </p><p>Sets and Functions </p><p>Functions </p><p>Definition </p><p>S</p><p>Let A<sub style="top: 0.1601em;">1</sub>, ...A<sub style="top: 0.1363em;">n </sub>be a collection of sets, and let X = <sup style="top: -0.4189em;">n </sup>A<sub style="top: 0.1601em;">i</sub>. The <strong>cartesian </strong></p><p>1</p><p><strong>product </strong>of this collection of sets, written as A<sub style="top: 0.1601em;">1 </sub>× ... × A<sub style="top: 0.1363em;">n </sub>or Π<sup style="top: -0.3299em;">n</sup><sub style="top: 0.2887em;">i=1</sub>A<sub style="top: 0.1601em;">i</sub>, is the set of all n-tuples (x<sub style="top: 0.1601em;">1</sub>, ..., x<sub style="top: 0.1364em;">n</sub>) such that x<sub style="top: 0.1601em;">i </sub>∈ A<sub style="top: 0.1601em;">i</sub>, ∀i ∈ {1, ..., n}. </p><p>5. Let X be a set. A <strong>sequence </strong>or <strong>infinite sequence </strong>of elements of X </p><p>is a function x : Z<sub style="top: 0.1363em;">++ </sub>→ X. (Z<sub style="top: 0.1363em;">++ </sub>is the set of positive integers). Sequences are written by collecting images in order. We write x = (x<sub style="top: 0.1601em;">1</sub>, x<sub style="top: 0.1601em;">2</sub>, ......). This definition generalizes the notion of infinite sequences of real numbers. </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">12 / 27 </li></ul><p></p><p>Preliminaries </p><p>Sets and Functions </p><p>Functions - Images, Preimages </p><p>Let f : A → B. </p><p>Definition </p><p>Let A<sub style="top: 0.1602em;">0 </sub>⊆ A. The <strong>image </strong>of A<sub style="top: 0.1602em;">0 </sub>under f, denoted f(A<sub style="top: 0.1602em;">0</sub>), is the set </p><p>{b|b = f(a), for some a ∈ A<sub style="top: 0.1601em;">0</sub>}. </p><p>Let B<sub style="top: 0.1601em;">0 </sub>⊆ B. The <strong>preimage </strong>of B<sub style="top: 0.1601em;">0 </sub>under f, f<sup style="top: -0.3299em;">−1</sup>(B<sub style="top: 0.1601em;">0</sub>) = {a|f(a) ∈ B<sub style="top: 0.1601em;">0</sub>}. </p><p>So the image of a set is the collection of images of all its elements, and the preimage or inverse image of a set is the collection of all elements in the domain that map into this set. </p><p>Example </p><p>For the function f(x) = x<sup style="top: -0.3299em;">2</sup>, let A<sub style="top: 0.1601em;">0 </sub>= [−2, 2]. Then, f(A<sub style="top: 0.1601em;">0</sub>) = [0, 4]. Let B<sub style="top: 0.1601em;">0 </sub>= [−2, 9]. Then, f<sup style="top: -0.3299em;">−1</sup>(B<sub style="top: 0.1601em;">0</sub>) = [−3, 3]. </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">13 / 27 </li></ul><p></p><p>Preliminaries </p><p>Sets and Functions </p><p>Functions - Injective, Surjective </p><p>Fact. Let f : A → B, A<sub style="top: 0.1601em;">0</sub>, A<sub style="top: 0.1601em;">1 </sub>⊆ A, B<sub style="top: 0.1601em;">0</sub>, B<sub style="top: 0.1601em;">1 </sub>⊆ B. Then (i) </p><p>B<sub style="top: 0.1601em;">0 </sub>⊆ B<sub style="top: 0.1601em;">1 </sub>⇒ f<sup style="top: -0.3299em;">−1</sup>(B<sub style="top: 0.1601em;">0</sub>) ⊆ f<sup style="top: -0.3299em;">−1</sup>(B<sub style="top: 0.1601em;">1</sub>). </p><p>(ii) f<sup style="top: -0.3299em;">−1</sup>(B<sub style="top: 0.1601em;">0 </sub>∗ B<sub style="top: 0.1601em;">1</sub>) = f<sup style="top: -0.3299em;">−1</sup>(B<sub style="top: 0.1601em;">0</sub>) ∗ f<sup style="top: -0.3299em;">−1</sup>(B<sub style="top: 0.1601em;">1</sub>), where ∗ can be ∪, ∩, −. i.e., f<sup style="top: -0.3298em;">−1 </sup>preserves set inclusion, union, intersection and difference. f only preserves the first two of these. The 3rd holds with ⊆ and the 4th with ⊇. To find counterexamples, many-to-one functions (to which we now move) are helpful. Proofs of the above claims are homework. </p><p>Definition </p><p>f : A → B is injective (one-to-one) if [f(a) = f(a<sup style="top: -0.5643em;">0 </sup>)] ⇒ [a = a<sup style="top: -0.5643em;">0 </sup>]. It is surjective (onto) if for every b ∈ B, there exists a ∈ A s.t. b = f(a). A function that is both of these is called bijective. </p><p>For example, f : &lt; → &lt; defined by f(x) = x<sup style="top: -0.3298em;">2 </sup>is many-to-one and not surjective. If the domain is &lt;<sub style="top: 0.1363em;">+ </sub>instead, then f is injective, and further if the codomain is &lt;<sub style="top: 0.1363em;">+</sub>, then it is bijective. </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">14 / 27 </li></ul><p></p><p>Preliminaries </p><p>Sets and Functions </p><p>Functions, Inverse </p><p>Fact. Let f : A → B, A<sub style="top: 0.1601em;">0 </sub>⊆ A, B<sub style="top: 0.1601em;">0 </sub>⊆ B. Then (i)f<sup style="top: -0.3299em;">−1</sup>(f(A<sub style="top: 0.1601em;">0</sub>)) ⊇ A<sub style="top: 0.1601em;">0</sub>; equality holds if f is injective. (ii) f(f<sup style="top: -0.3299em;">−1</sup>(B<sub style="top: 0.1601em;">0</sub>)) ⊆ B<sub style="top: 0.1601em;">0</sub>; equality holds if f is surjective. You should also show by examples that equality does not in general hold. Now we use the f<sup style="top: -0.3299em;">−1 </sup>to mean something different, namely the <strong>inverse function</strong>. If f is bijective, then define a function f<sup style="top: -0.3298em;">−1 </sup>: B → A by f<sup style="top: -0.3299em;">−1</sup>(b) = a if a is the unique element of A s.t. f(a) = b. Note that f<sup style="top: -0.3299em;">−1 </sup>is also bijective. Indeed, suppose b = b<sup style="top: -0.5643em;">0 </sup>and f<sup style="top: -0.3299em;">−1</sup>(b) = f<sup style="top: -0.3299em;">−1</sup>(b<sup style="top: -0.5643em;">0 </sup>) = a. Then f(a) = b and f(a) = b<sup style="top: -0.5643em;">0 </sup>which is not possible. So f<sup style="top: -0.3299em;">−1 </sup>is injective. Moreover, for every a ∈ A, there is a b ∈ B s.t. b = f(a), since f is a function. So, there is a b ∈ B s.t. f<sup style="top: -0.3298em;">−1</sup>(b) = a. So f<sup style="top: -0.3298em;">−1 </sup>is also surjective; hence it is bijective. </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">15 / 27 </li></ul><p></p><p>Preliminaries </p><p>Sets and Functions </p><p>Functions </p><p>One way to check whether f is bijective uses the following </p><p>Lemma </p><p>Let f : A → B. If there are 2 functions g, h from B to A s.t. g(f(a)) = a, ∀a ∈ A and f(h(b)) = b∀b ∈ B, then f is bijective and </p><ul style="display: flex;"><li style="flex:1">g = h = f<sup style="top: -0.3298em;">−1 </sup></li><li style="flex:1">.</li></ul><p></p><p>Proof. </p><p>f injective. Suppose a = a<sup style="top: -0.5643em;">0 </sup>and f(a) = f(a<sup style="top: -0.5643em;">0 </sup>) = b. Then g(f(a)) = g(b) = g(f(a<sup style="top: -0.5643em;">0 </sup>)). So g(b) cannot be equal to both a and a<sup style="top: -0.5643em;">0 </sup>. Contradiction. f is also surjective. Indeed, suppose there is a b ∈ B with no preimage under f. However, we require f(h(b)) = b. This implies h(b) is a preimage. Contradiction. </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">16 / 27 </li></ul><p></p><p>Preliminaries </p><p>Sets and Functions </p><p>Simultaneous Equations </p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">m</li><li style="flex:1">m</li></ul><p></p><p>Let f : &lt; →&nbsp;&lt; . Fix y ∈ &lt;&nbsp;. Then the equation f(x) = y represents a system of m simultaneous equations in n variables. This is clear since the equation can be rewritten as </p><p>f<sub style="top: 0.1601em;">1</sub>(x<sub style="top: 0.1601em;">1</sub>, ..., x<sub style="top: 0.1363em;">n</sub>) = y<sub style="top: 0.1601em;">1 </sub>. . . . . . . . . . . . . . . . . . f<sub style="top: 0.1364em;">m</sub>(x<sub style="top: 0.1601em;">1</sub>, ..., x<sub style="top: 0.1364em;">n</sub>) = y<sub style="top: 0.1364em;">m </sub></p><p>where y = (y<sub style="top: 0.1601em;">1</sub>, ..., y<sub style="top: 0.1363em;">m</sub>), x = (x<sub style="top: 0.1601em;">1</sub>, ..., x<sub style="top: 0.1363em;">n</sub>), </p><p>n</p><p>f(x) = (f<sub style="top: 0.1601em;">1</sub>(x), ..., f<sub style="top: 0.1364em;">m</sub>(x)), ∀x ∈ &lt;&nbsp;, where for each i ∈ {1, ..., m}, the </p><p>n</p><p>component function f<sub style="top: 0.1601em;">i </sub>: &lt; →&nbsp;&lt;. An x which satisfies f(x) = y is called </p><p>a <strong>solution </strong>to the equation or system of equations. <strong>Note that whether the system of equations has a solution is the same question as </strong></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p><strong>whether </strong>f<sup style="top: -0.3299em;">−1</sup>({y}) <strong>is a nonempty set</strong>. Exercise. f : &lt; →&nbsp;&lt; , </p><p>f(x<sub style="top: 0.1601em;">1</sub>, x<sub style="top: 0.1601em;">2</sub>) = (x<sub style="top: 0.1601em;">1</sub>x<sub style="top: 0.1601em;">2</sub>, x<sub style="top: 0.1601em;">1 </sub>+ x<sub style="top: 0.1601em;">2</sub>). For what values of y in the codomain does the equation f(x) = y have a solution? </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">17 / 27 </li></ul><p></p><p>Preliminaries </p><p>Sets and Functions </p><p>Simultaneous Equations - contour surfaces </p><p>One way to look at a solution: the intersection of (hyper)-surfaces. For example, in the exercise above, given y = (y<sub style="top: 0.1602em;">1</sub>, y<sub style="top: 0.1602em;">2</sub>), the equations </p><p>2</p><p>x<sub style="top: 0.1601em;">1</sub>x<sub style="top: 0.1601em;">2 </sub>= y<sub style="top: 0.1601em;">1 </sub>and x<sub style="top: 0.1601em;">1 </sub>+ x<sub style="top: 0.1601em;">2 </sub>= y<sub style="top: 0.1601em;">2</sub>. These are 1-dimensional curves in &lt; , and their intersection is the <strong>set of solutions</strong>. For the more general n-variable case, f<sub style="top: 0.1601em;">i</sub>(x<sub style="top: 0.1601em;">1</sub>, ..., x<sub style="top: 0.1363em;">n</sub>) = y<sub style="top: 0.1601em;">i </sub>describes an (n − 1)-dimensional surface, and the solution set is the intersection of the m such surfaces. </p><p>Definition </p><p>n</p><p>Let g : &lt; →&nbsp;&lt; and let y ∈ &lt;. The contour set of g at y, </p><p>n</p><p>C<sub style="top: 0.1364em;">g</sub>(y) = {x ∈ &lt;&nbsp;|g(x) = y}. The upper contour set U<sub style="top: 0.1364em;">g</sub>(y) = {x|g(x) ≥ y}. The lower contour set L<sub style="top: 0.1364em;">g</sub>(y) = {x|g(x) ≤ y}. </p><p>Observe that C<sub style="top: 0.1364em;">g</sub>(y) = U<sub style="top: 0.1364em;">g</sub>(y) ∩ L<sub style="top: 0.1364em;">g</sub>(y). </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">18 / 27 </li></ul><p></p><p>Preliminaries </p><p>Sets and Functions </p><p>Simultaneous Equations in Economics </p><p>First order conditions in optimization problems; general equilibrium; Nash equilibrium in some problems. All these can be cast as solutions </p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">n</li><li style="flex:1">n</li></ul><p></p><p>to a system of equations F(x) = 0, where F : &lt; →&nbsp;&lt; and 0 ∈ &lt;&nbsp;. General equilbrium is sometimes described as a fixed point of a </p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">n</li></ul><p></p><p>function. (i.e., if say f : &lt; →&nbsp;&lt; , x is a fixed point if it satisfies f(x) = x). But x is a fixed point of f if and only if it is a zero of F(x) ≡ f(x) − x, so the the question is really of finding the zeros of F i.e. solving F(x) = 0. Continuity of F is an important player in the existence of a solution. (Just as in 1-dimensional case: if f : &lt; → &lt;, is continuous, and f(x<sub style="top: 0.1601em;">1</sub>) &gt; 0 &gt; f(x<sub style="top: 0.1601em;">2</sub>), then the intermediate value theorem assures a solution x ∈ (x<sub style="top: 0.1601em;">1</sub>, x<sub style="top: 0.1601em;">2</sub>).) For the more general higher dimensional case, in computational economics methods like Gauss-Jacobi make use of 1-dimensional solutions to the n different equations in an iterative way to converge to a solution. (see Judd - Numerical Methods in Economics). </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">19 / 27 </li></ul><p></p><p>Preliminaries </p><p>Sets and Functions </p><p>Relations </p><p>Recall that we can define a function as a subset of a Cartesian product C × D such that elements of C appear as first coordinates of ordered pairs at most once. Relations are more general in a way. </p><p>Definition </p><p>A relation ꢀ on a set X is a subset of X<sup style="top: -0.3299em;">2</sup>, i.e. ꢀ⊆ X × X. Conventionally, if (x, y) ∈ꢀ, we write x ꢀ y. As in the case of defining functions, the idea of the definition is to not take anything more than the meaning of a set to be understood, and to successively define things in terms of it. (Set -&gt; Cartesian Product -&gt; Relation). But as in the case of a function, we think of relations in specific ways not directly related to the definition. For example, in consumer theory, if X is the consumption set and x, y ∈ X, we think of x ꢀ y directly as “x is preferred to y". </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    27 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us