
<p>Lecture 1 Mathematical Preliminaries </p><p>A. Banerji July 26, 2016 </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">1 / 27 </li></ul><p></p><p>Outline </p><p>1</p><p>Preliminaries </p><p>Sets Logic Sets and Functions Linear Spaces </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">2 / 27 </li></ul><p></p><p>Preliminaries </p><p>Sets </p><p>Basic Concepts </p><p>Take as understood the notion of a set. Usually use upper case letters for sets and lower case ones for their elements. Notation. </p><p>a ∈ A, b ∈/ A. </p><p>A ⊆ B if every element of A also belongs to B. A = B if A ⊆ B and B ⊆ A are both true. </p><p>A ∪ B = {x|x ∈ A or x ∈ B}. The ‘or’ is inclusive of ‘both’. A ∩ B = {x|x ∈ A and x ∈ B}. What if A and B have no common elements? To retain meaning, we invent the concept of an empty set, ∅. </p><p>A ∪ ∅ = A, A ∩ ∅ = ∅. For the latter, note that there’s no element in common between the sets A and ∅ because the latter does not have any elements. </p><p>∅ ⊆ A, for all A. Every element of ∅ belongs to A is <strong>vacuously true </strong>since ∅ has no elements. This brings us to some logic. </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">3 / 27 </li></ul><p></p><p>Preliminaries </p><p>Logic </p><p>Logic </p><p>Statements or propositions must be either true or false. P ⇒ Q. If the statement P is true, then the statement Q is true. But if P is false, Q may be true or false. For example, on real numbers, let P = x > 0 and Q = x<sup style="top: -0.3299em;">2 </sup>> 0. If P is true, so is Q, but Q may be true even if P is not, e.g. x = −2. We club these together and say P ⇒ Q. </p><p>Let P = x<sup style="top: -0.3299em;">2 </sup>< 0 and Q = x = 5. Then P ⇒ Q is vacuously true. ∼ Q ⇒∼ P is the contrapositive of P ⇒ Q. </p><p>For example: If x<sup style="top: -0.3299em;">3 </sup>≤ 0, then x ≤ 0 is the contrapositive of “if x > 0, then x<sup style="top: -0.3298em;">3 </sup>> 0 ". </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">4 / 27 </li></ul><p></p><p>Preliminaries </p><p>Logic </p><p>Logic </p><p>Claim. A statement and its contrapositive are equivalent. </p><p>Proof. </p><p>Suppose P ⇒ Q is true. Suppose Q is false. Then P must be false, for if not, then via P ⇒ Q, Q would be true, contradicting our assumption that Q is false. On the other hand, suppose P ⇒ Q is false. It follows that P is true and Q is false (for if P is false, then P ⇒ Q is vacuously true). But then, ∼ Q ⇒∼ P cannot be true. </p><p>Definition </p><p>Q ⇒ P is called the converse of the statement P ⇒ Q. No relationship between a statement and its converse. e.g., if x > 0 then x<sup style="top: -0.3299em;">2 </sup>> 0 is true, but its converse is not. On the other hand, if some statement and its converse are both true, we say P if and only if Q or </p><p>P ⇔ Q. </p><p>5 / 27 </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p>July 26, 2016 </p><p>Preliminaries </p><p>Logic </p><p>Quantifiers and Negation </p><p>2 logical quantifiers: ‘for all’ and ‘there exists’. P : For all a ∈ A, property Π(a) holds. The negation of P (i.e. ∼ P) is the statement: There exists at least one a ∈ A s.t. property Π(a) does not hold. e.g. P : For every x ∈ <, x<sup style="top: -0.3299em;">2 </sup>> 0. The negation of P : There exists x ∈ < s.t. x<sup style="top: -0.3299em;">2 </sup>≤ 0. </p><p>Q : There exists b ∈ B s.t. property Θ(b) holds. ∼ Q : For all b ∈ B, property Θ(b) does not hold. </p><p><strong>Note. Order of quantifiers matters</strong>. e.g. ‘for all x > 0, there exists </p><p>y > 0 s.t. y<sup style="top: -0.3299em;">2 </sup>= x’, says that every positive real has a positive square root. This is not the same as ‘there exists y > 0 s.t. for all x > 0, y<sup style="top: -0.3299em;">2 </sup>= x’, which says some number y is the common square root of every positive real. </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">6 / 27 </li></ul><p></p><p>Preliminaries </p><p>Logic </p><p>Logic </p><p>Let Π(a, b) be a property defined on elements a and b in sets A and B respectively. Let P : For every a ∈ A there exists b ∈ B s.t. Π(a, b) holds. Then, ∼ P : There exists a ∈ A s.t. for all b ∈ B, Π(a, b) does not hold. </p><p><strong>Necessary and Sufficient Conditions </strong></p><p>Let P ⇒ Q be true. We say Q is necessary for P. Or P is sufficient for Q. So, if P ⇔ Q, P is necessary and sufficient for Q. </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">7 / 27 </li></ul><p></p><p>Preliminaries </p><p>Sets and Functions </p><p>Sets </p><p>Set Difference: A − B = {x|x ∈ A and x ∈/ B}. Also called the complement of B relative to A. More familiar is the </p><p>notion of the <strong>universal set </strong>X, and X − B = B<sup style="top: -0.3299em;">c</sup>. <strong>Some set-theoretic ‘laws’ </strong></p><p>Distributive Laws </p><p>(i) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (ii) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) </p><p>Proof. </p><p>(i) Suppose x ∈ LHS. So, x ∈ A and x ∈ (B ∪ C). So x ∈ A and either x ∈ B or x ∈ C or both. So, either x ∈ (A ∩ B) or x ∈ (A ∩ C) (or both). Converse? </p><p>DeMorgan’s Laws (i) A − (B ∪ C) = (A − B) ∩ (A − C) or more familiarly, </p><p>(B ∪ C)<sup style="top: -0.3299em;">c </sup>= B<sup style="top: -0.3299em;">c </sup>∩ C<sup style="top: -0.3299em;">c </sup></p><p>(ii) A − (B ∩ C) = (A − B) ∪ (A − C) or (B ∩ C)<sup style="top: -0.3299em;">c </sup>= B<sup style="top: -0.3299em;">c </sup>∪ C<sup style="top: -0.3299em;">c</sup>. </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">8 / 27 </li></ul><p></p><p>Preliminaries </p><p>Sets and Functions </p><p>Sets </p><p><strong>Arbitrary Unions and Intersections </strong></p><p>Let A be a collection of sets. Then </p><p>S</p><p>= {x|x ∈ A for at least one A ∈ A} </p><p>A∈A A∈A </p><p>T</p><p>= {x|x ∈ A for every A ∈ A} </p><p><strong>Cartesian Products </strong></p><p>We’ll say (a, b) is an <strong>ordered pair </strong>if the order of writing these 2 objects matters: i.e. if (a, b) and (b, a) are not the same thing. (Think of points on the plane). Alternatively, we can <strong>derive </strong>the notion of ordered pair from the more primitive notion of a set as follows. Define (a, b) = {{a}, {a, b}}. On the right is a set of 2 sets; the first of these is the singleton that we want to be ‘first’ in the ordered pair. The 2nd is the set of both objects (obviously, {a, b} = {b, a}, so that alone cannot be sufficient to define an ordered pair). Thus (b, a) is defined to be the set {{b}, {a, b}}. Let A and B be sets. We then have </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">9 / 27 </li></ul><p></p><p>Preliminaries </p><p>Sets and Functions </p><p>Functions </p><p>Definition </p><p>The Cartesian product A × B = {(x, y)|x ∈ A and y ∈ B}. We can formally define a function using the notion of Cartesian product, as follows. Let C, D be 2 sets. A rule of assignment r is a subset of C × D s.t. elements of C appear as first coordinates of ordered pairs belonging to r at most once. The set A of elements of C appearing as first coordinates in r is called the domain of r. The set of elements of D comprising 2nd coordinates of r is called the image set of r. Then </p><p>Definition </p><p>A function f is a rule of assignment r along with a set B that contains the image set of r. </p><p>A is called the domain of f and the image set of r is called the image set or range of f. </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">10 / 27 </li></ul><p></p><p>Preliminaries </p><p>Sets and Functions </p><p>Functions </p><p><strong>We write </strong>f : A → B <strong>and think of </strong>f <strong>as a rule carrying every element </strong>a ∈ A <strong>to exactly one element </strong>b ∈ B<strong>. </strong></p><p>Examples. 1. f : < → < defined by f(x) = x<sup style="top: -0.3299em;">2</sup>, ∀x ∈ <. </p><p>2</p><p>2. Using the notation < for the Cartesian product < × < (representing </p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p>the plane), let f : < → < be defined by f(x<sub style="top: 0.1601em;">1</sub>, x<sub style="top: 0.1601em;">2</sub>) = x<sub style="top: 0.1601em;">1</sub>x<sub style="top: 0.1601em;">2</sub>, ∀(x<sub style="top: 0.1601em;">1</sub>, x<sub style="top: 0.1601em;">2</sub>) ∈ < . </p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p>3. g : < → < defined by g(x<sub style="top: 0.1601em;">1</sub>, x<sub style="top: 0.1601em;">2</sub>) = (x<sub style="top: 0.1601em;">1</sub>x<sub style="top: 0.1601em;">2</sub>, x<sub style="top: 0.1601em;">1 </sub>+ x<sub style="top: 0.1601em;">2</sub>), ∀(x<sub style="top: 0.1601em;">1</sub>, x<sub style="top: 0.1601em;">2</sub>) ∈ < . </p><p>4. <strong>Arbitrary Cartesian Products</strong>. We first formally define <strong>n-tuples </strong>in </p><p>terms of functions. Let X be a set and define the function x : {1, ..., n} → X. This function is called an n-tuple of elements of X. It’s image at i ∈ {1, ..., n}, x(i), is written as x<sub style="top: 0.1601em;">i</sub>. The n-tuple is written as (x<sub style="top: 0.1601em;">1</sub>, ..., x<sub style="top: 0.1363em;">n</sub>). The order counts. We write X<sup style="top: -0.3299em;">n </sup>for the set of all n-tuples of </p><p>n</p><p>elements of X. The leading example is < , n-dimensional Euclidean space. </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">11 / 27 </li></ul><p></p><p>Preliminaries </p><p>Sets and Functions </p><p>Functions </p><p>Definition </p><p>S</p><p>Let A<sub style="top: 0.1601em;">1</sub>, ...A<sub style="top: 0.1363em;">n </sub>be a collection of sets, and let X = <sup style="top: -0.4189em;">n </sup>A<sub style="top: 0.1601em;">i</sub>. The <strong>cartesian </strong></p><p>1</p><p><strong>product </strong>of this collection of sets, written as A<sub style="top: 0.1601em;">1 </sub>× ... × A<sub style="top: 0.1363em;">n </sub>or Π<sup style="top: -0.3299em;">n</sup><sub style="top: 0.2887em;">i=1</sub>A<sub style="top: 0.1601em;">i</sub>, is the set of all n-tuples (x<sub style="top: 0.1601em;">1</sub>, ..., x<sub style="top: 0.1364em;">n</sub>) such that x<sub style="top: 0.1601em;">i </sub>∈ A<sub style="top: 0.1601em;">i</sub>, ∀i ∈ {1, ..., n}. </p><p>5. Let X be a set. A <strong>sequence </strong>or <strong>infinite sequence </strong>of elements of X </p><p>is a function x : Z<sub style="top: 0.1363em;">++ </sub>→ X. (Z<sub style="top: 0.1363em;">++ </sub>is the set of positive integers). Sequences are written by collecting images in order. We write x = (x<sub style="top: 0.1601em;">1</sub>, x<sub style="top: 0.1601em;">2</sub>, ......). This definition generalizes the notion of infinite sequences of real numbers. </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">12 / 27 </li></ul><p></p><p>Preliminaries </p><p>Sets and Functions </p><p>Functions - Images, Preimages </p><p>Let f : A → B. </p><p>Definition </p><p>Let A<sub style="top: 0.1602em;">0 </sub>⊆ A. The <strong>image </strong>of A<sub style="top: 0.1602em;">0 </sub>under f, denoted f(A<sub style="top: 0.1602em;">0</sub>), is the set </p><p>{b|b = f(a), for some a ∈ A<sub style="top: 0.1601em;">0</sub>}. </p><p>Let B<sub style="top: 0.1601em;">0 </sub>⊆ B. The <strong>preimage </strong>of B<sub style="top: 0.1601em;">0 </sub>under f, f<sup style="top: -0.3299em;">−1</sup>(B<sub style="top: 0.1601em;">0</sub>) = {a|f(a) ∈ B<sub style="top: 0.1601em;">0</sub>}. </p><p>So the image of a set is the collection of images of all its elements, and the preimage or inverse image of a set is the collection of all elements in the domain that map into this set. </p><p>Example </p><p>For the function f(x) = x<sup style="top: -0.3299em;">2</sup>, let A<sub style="top: 0.1601em;">0 </sub>= [−2, 2]. Then, f(A<sub style="top: 0.1601em;">0</sub>) = [0, 4]. Let B<sub style="top: 0.1601em;">0 </sub>= [−2, 9]. Then, f<sup style="top: -0.3299em;">−1</sup>(B<sub style="top: 0.1601em;">0</sub>) = [−3, 3]. </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">13 / 27 </li></ul><p></p><p>Preliminaries </p><p>Sets and Functions </p><p>Functions - Injective, Surjective </p><p>Fact. Let f : A → B, A<sub style="top: 0.1601em;">0</sub>, A<sub style="top: 0.1601em;">1 </sub>⊆ A, B<sub style="top: 0.1601em;">0</sub>, B<sub style="top: 0.1601em;">1 </sub>⊆ B. Then (i) </p><p>B<sub style="top: 0.1601em;">0 </sub>⊆ B<sub style="top: 0.1601em;">1 </sub>⇒ f<sup style="top: -0.3299em;">−1</sup>(B<sub style="top: 0.1601em;">0</sub>) ⊆ f<sup style="top: -0.3299em;">−1</sup>(B<sub style="top: 0.1601em;">1</sub>). </p><p>(ii) f<sup style="top: -0.3299em;">−1</sup>(B<sub style="top: 0.1601em;">0 </sub>∗ B<sub style="top: 0.1601em;">1</sub>) = f<sup style="top: -0.3299em;">−1</sup>(B<sub style="top: 0.1601em;">0</sub>) ∗ f<sup style="top: -0.3299em;">−1</sup>(B<sub style="top: 0.1601em;">1</sub>), where ∗ can be ∪, ∩, −. i.e., f<sup style="top: -0.3298em;">−1 </sup>preserves set inclusion, union, intersection and difference. f only preserves the first two of these. The 3rd holds with ⊆ and the 4th with ⊇. To find counterexamples, many-to-one functions (to which we now move) are helpful. Proofs of the above claims are homework. </p><p>Definition </p><p>f : A → B is injective (one-to-one) if [f(a) = f(a<sup style="top: -0.5643em;">0 </sup>)] ⇒ [a = a<sup style="top: -0.5643em;">0 </sup>]. It is surjective (onto) if for every b ∈ B, there exists a ∈ A s.t. b = f(a). A function that is both of these is called bijective. </p><p>For example, f : < → < defined by f(x) = x<sup style="top: -0.3298em;">2 </sup>is many-to-one and not surjective. If the domain is <<sub style="top: 0.1363em;">+ </sub>instead, then f is injective, and further if the codomain is <<sub style="top: 0.1363em;">+</sub>, then it is bijective. </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">14 / 27 </li></ul><p></p><p>Preliminaries </p><p>Sets and Functions </p><p>Functions, Inverse </p><p>Fact. Let f : A → B, A<sub style="top: 0.1601em;">0 </sub>⊆ A, B<sub style="top: 0.1601em;">0 </sub>⊆ B. Then (i)f<sup style="top: -0.3299em;">−1</sup>(f(A<sub style="top: 0.1601em;">0</sub>)) ⊇ A<sub style="top: 0.1601em;">0</sub>; equality holds if f is injective. (ii) f(f<sup style="top: -0.3299em;">−1</sup>(B<sub style="top: 0.1601em;">0</sub>)) ⊆ B<sub style="top: 0.1601em;">0</sub>; equality holds if f is surjective. You should also show by examples that equality does not in general hold. Now we use the f<sup style="top: -0.3299em;">−1 </sup>to mean something different, namely the <strong>inverse function</strong>. If f is bijective, then define a function f<sup style="top: -0.3298em;">−1 </sup>: B → A by f<sup style="top: -0.3299em;">−1</sup>(b) = a if a is the unique element of A s.t. f(a) = b. Note that f<sup style="top: -0.3299em;">−1 </sup>is also bijective. Indeed, suppose b = b<sup style="top: -0.5643em;">0 </sup>and f<sup style="top: -0.3299em;">−1</sup>(b) = f<sup style="top: -0.3299em;">−1</sup>(b<sup style="top: -0.5643em;">0 </sup>) = a. Then f(a) = b and f(a) = b<sup style="top: -0.5643em;">0 </sup>which is not possible. So f<sup style="top: -0.3299em;">−1 </sup>is injective. Moreover, for every a ∈ A, there is a b ∈ B s.t. b = f(a), since f is a function. So, there is a b ∈ B s.t. f<sup style="top: -0.3298em;">−1</sup>(b) = a. So f<sup style="top: -0.3298em;">−1 </sup>is also surjective; hence it is bijective. </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">15 / 27 </li></ul><p></p><p>Preliminaries </p><p>Sets and Functions </p><p>Functions </p><p>One way to check whether f is bijective uses the following </p><p>Lemma </p><p>Let f : A → B. If there are 2 functions g, h from B to A s.t. g(f(a)) = a, ∀a ∈ A and f(h(b)) = b∀b ∈ B, then f is bijective and </p><ul style="display: flex;"><li style="flex:1">g = h = f<sup style="top: -0.3298em;">−1 </sup></li><li style="flex:1">.</li></ul><p></p><p>Proof. </p><p>f injective. Suppose a = a<sup style="top: -0.5643em;">0 </sup>and f(a) = f(a<sup style="top: -0.5643em;">0 </sup>) = b. Then g(f(a)) = g(b) = g(f(a<sup style="top: -0.5643em;">0 </sup>)). So g(b) cannot be equal to both a and a<sup style="top: -0.5643em;">0 </sup>. Contradiction. f is also surjective. Indeed, suppose there is a b ∈ B with no preimage under f. However, we require f(h(b)) = b. This implies h(b) is a preimage. Contradiction. </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">16 / 27 </li></ul><p></p><p>Preliminaries </p><p>Sets and Functions </p><p>Simultaneous Equations </p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">m</li><li style="flex:1">m</li></ul><p></p><p>Let f : < → < . Fix y ∈ < . Then the equation f(x) = y represents a system of m simultaneous equations in n variables. This is clear since the equation can be rewritten as </p><p>f<sub style="top: 0.1601em;">1</sub>(x<sub style="top: 0.1601em;">1</sub>, ..., x<sub style="top: 0.1363em;">n</sub>) = y<sub style="top: 0.1601em;">1 </sub>. . . . . . . . . . . . . . . . . . f<sub style="top: 0.1364em;">m</sub>(x<sub style="top: 0.1601em;">1</sub>, ..., x<sub style="top: 0.1364em;">n</sub>) = y<sub style="top: 0.1364em;">m </sub></p><p>where y = (y<sub style="top: 0.1601em;">1</sub>, ..., y<sub style="top: 0.1363em;">m</sub>), x = (x<sub style="top: 0.1601em;">1</sub>, ..., x<sub style="top: 0.1363em;">n</sub>), </p><p>n</p><p>f(x) = (f<sub style="top: 0.1601em;">1</sub>(x), ..., f<sub style="top: 0.1364em;">m</sub>(x)), ∀x ∈ < , where for each i ∈ {1, ..., m}, the </p><p>n</p><p>component function f<sub style="top: 0.1601em;">i </sub>: < → <. An x which satisfies f(x) = y is called </p><p>a <strong>solution </strong>to the equation or system of equations. <strong>Note that whether the system of equations has a solution is the same question as </strong></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p><strong>whether </strong>f<sup style="top: -0.3299em;">−1</sup>({y}) <strong>is a nonempty set</strong>. Exercise. f : < → < , </p><p>f(x<sub style="top: 0.1601em;">1</sub>, x<sub style="top: 0.1601em;">2</sub>) = (x<sub style="top: 0.1601em;">1</sub>x<sub style="top: 0.1601em;">2</sub>, x<sub style="top: 0.1601em;">1 </sub>+ x<sub style="top: 0.1601em;">2</sub>). For what values of y in the codomain does the equation f(x) = y have a solution? </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">17 / 27 </li></ul><p></p><p>Preliminaries </p><p>Sets and Functions </p><p>Simultaneous Equations - contour surfaces </p><p>One way to look at a solution: the intersection of (hyper)-surfaces. For example, in the exercise above, given y = (y<sub style="top: 0.1602em;">1</sub>, y<sub style="top: 0.1602em;">2</sub>), the equations </p><p>2</p><p>x<sub style="top: 0.1601em;">1</sub>x<sub style="top: 0.1601em;">2 </sub>= y<sub style="top: 0.1601em;">1 </sub>and x<sub style="top: 0.1601em;">1 </sub>+ x<sub style="top: 0.1601em;">2 </sub>= y<sub style="top: 0.1601em;">2</sub>. These are 1-dimensional curves in < , and their intersection is the <strong>set of solutions</strong>. For the more general n-variable case, f<sub style="top: 0.1601em;">i</sub>(x<sub style="top: 0.1601em;">1</sub>, ..., x<sub style="top: 0.1363em;">n</sub>) = y<sub style="top: 0.1601em;">i </sub>describes an (n − 1)-dimensional surface, and the solution set is the intersection of the m such surfaces. </p><p>Definition </p><p>n</p><p>Let g : < → < and let y ∈ <. The contour set of g at y, </p><p>n</p><p>C<sub style="top: 0.1364em;">g</sub>(y) = {x ∈ < |g(x) = y}. The upper contour set U<sub style="top: 0.1364em;">g</sub>(y) = {x|g(x) ≥ y}. The lower contour set L<sub style="top: 0.1364em;">g</sub>(y) = {x|g(x) ≤ y}. </p><p>Observe that C<sub style="top: 0.1364em;">g</sub>(y) = U<sub style="top: 0.1364em;">g</sub>(y) ∩ L<sub style="top: 0.1364em;">g</sub>(y). </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">18 / 27 </li></ul><p></p><p>Preliminaries </p><p>Sets and Functions </p><p>Simultaneous Equations in Economics </p><p>First order conditions in optimization problems; general equilibrium; Nash equilibrium in some problems. All these can be cast as solutions </p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">n</li><li style="flex:1">n</li></ul><p></p><p>to a system of equations F(x) = 0, where F : < → < and 0 ∈ < . General equilbrium is sometimes described as a fixed point of a </p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">n</li></ul><p></p><p>function. (i.e., if say f : < → < , x is a fixed point if it satisfies f(x) = x). But x is a fixed point of f if and only if it is a zero of F(x) ≡ f(x) − x, so the the question is really of finding the zeros of F i.e. solving F(x) = 0. Continuity of F is an important player in the existence of a solution. (Just as in 1-dimensional case: if f : < → <, is continuous, and f(x<sub style="top: 0.1601em;">1</sub>) > 0 > f(x<sub style="top: 0.1601em;">2</sub>), then the intermediate value theorem assures a solution x ∈ (x<sub style="top: 0.1601em;">1</sub>, x<sub style="top: 0.1601em;">2</sub>).) For the more general higher dimensional case, in computational economics methods like Gauss-Jacobi make use of 1-dimensional solutions to the n different equations in an iterative way to converge to a solution. (see Judd - Numerical Methods in Economics). </p><p>(Delhi School of Economics) </p><p>Introductory Math Econ </p><p></p><ul style="display: flex;"><li style="flex:1">July 26, 2016 </li><li style="flex:1">19 / 27 </li></ul><p></p><p>Preliminaries </p><p>Sets and Functions </p><p>Relations </p><p>Recall that we can define a function as a subset of a Cartesian product C × D such that elements of C appear as first coordinates of ordered pairs at most once. Relations are more general in a way. </p><p>Definition </p><p>A relation ꢀ on a set X is a subset of X<sup style="top: -0.3299em;">2</sup>, i.e. ꢀ⊆ X × X. Conventionally, if (x, y) ∈ꢀ, we write x ꢀ y. As in the case of defining functions, the idea of the definition is to not take anything more than the meaning of a set to be understood, and to successively define things in terms of it. (Set -> Cartesian Product -> Relation). But as in the case of a function, we think of relations in specific ways not directly related to the definition. For example, in consumer theory, if X is the consumption set and x, y ∈ X, we think of x ꢀ y directly as “x is preferred to y". </p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages27 Page
-
File Size-