Development of a Polarizable Transferable Force Field for Vapor-Liquid Equilibria Calculations

Development of a Polarizable Transferable Force Field for Vapor-Liquid Equilibria Calculations

Development of a Polarizable Transferable Force Field for Vapor-Liquid Equilibria Calculations Von der Fakult¨atEnergie-, Verfahrens- und Biotechnik der Universit¨atStuttgart und dem Stuttgart Research Centre for Simulation Technology zur Erlangung der W¨urdeeines Doktors der Ingenieurwissenschaft (Dr.-Ing.) genehmigte Abhandlung Vorgelegt von Christian Waibel aus Schw¨abisch Gm¨und Hauptberichter: Prof. Dr.-Ing. Joachim Groß Mitberichter: Prof. Dr.-Ing. habil. Jadran Vrabec Tag der m¨undlichen Pr¨ufung:28.01.2019 Institut f¨urTechnische Thermodynamik und Thermische Verfahrenstechnik der Universit¨atStuttgart 2019 Erkl¨arungzu meiner Dissertation mit dem Titel: Development of a Polarizable Transferable Force Field for Vapor-Liquid Equilibria Calculations Hiermit erkl¨areich, dass ich die beigef¨ugteDissertation selbstst¨andigverfasst und keine anderen als die angegebenen Hilfsmittel genutzt habe. Alle w¨ortlich oder inhaltlich ¨ubernommenen Stellen habe ich als solche gekennzeichnet. Ich versichere außerdem, dass ich die beigef¨ugteDissertation nur in diesem und keinem an- deren Promotionsverfahren eingereicht habe und dass diesem Promotionsverfahren keine endg¨ultiggescheiterten Promotionsverfahren vorausgegangen sind. Ort, Datum Unterschrift Contents 1 Introduction 15 1.1 Vapor-Liquid Equilibria in Molecular Simulation . 15 1.1.1 Gibbs Ensemble Monte Carlo . 16 1.1.2 Grand Canonical Transition Matrix Monte Carlo . 18 1.2 Molecular Model . 23 1.2.1 Classical Force Fields . 23 1.2.2 Polarizable Force Fields . 25 1.3 Methods for Electrostatic Energy Calculation . 26 1.3.1 Ewald Summation . 27 1.3.2 Wolf Summation . 29 1.4 Outline of this thesis . 29 Bibliography . 30 2 Modification of the Wolf Method and Evaluation for Molecular Simula- tion of Vapor-Liquid Equilibria 35 2.1 Wolf Summation . 36 2.2 Molecular Simulation Technique . 41 2.2.1 Simulation Method . 41 2.2.2 Molecular Model . 42 2.2.3 Simulation Details . 43 2.3 Results and Discussion . 43 2.3.1 Wolf Parameter Estimation . 43 2.3.2 VLE Calculations . 47 2.4 Conclusion . 49 Appendix . 50 Bibliography . 51 3 A Modified Shifted Force Approach to the Wolf Summation 56 3.1 Wolf Summation . 58 3.1.1 Shifted Potential . 58 5 3.1.2 Shifted Force Potential . 60 3.1.3 A Modified Shifted Force Approach . 61 3.2 Molecular Simulation Technique . 65 3.2.1 Molecular Model . 65 3.2.2 Monte Carlo Simulations . 67 3.2.3 Molecular Dynamics Simulations . 69 3.3 Results and Discussion . 70 3.3.1 Correlation coefficients . 70 3.3.2 VLE calculations . 72 3.3.3 Dynamic Properties . 74 3.3.4 Dielectric Constant . 76 3.4 Conclusion . 77 Bibliography . 78 4 Transferability of Cross-Interaction Pair Potentials: Vapor-Liquid Phase Equilibria of n-Alkane/Nitrogen Mixtures Using the TAMie Force Field 84 4.1 Molecular Model . 87 4.2 Cross-Interaction Energy Parameters estimated from PCP-SAFT Equation of State . 88 4.3 Procedure for iterating cross-energy parameters in force fields . 90 4.4 Molecular Simulation Method . 91 4.5 Simulation Details . 92 4.6 Results and Discussion . 93 4.7 Conclusion . 98 Bibliography . 99 5 Polarizable Transferable Anisotropic United-Atom Force Field Based on the Mie Potential for Phase Equilibria: n-Alkanes, Ethers, and Nitrogen105 5.1 Force Field Development . 108 5.1.1 Intermolecular Energy . 108 5.1.2 Intramolecular Energy . 112 5.1.3 Optimization of Force Field Parameters . 112 5.2 Molecular Simulation Technique . 114 5.2.1 Monte Carlo Simulations . 114 5.2.2 Energy Minimization . 115 5.2.3 Electrostatics . 116 5.3 Results and Discussion . 117 5.3.1 Alkanes . 117 5.3.2 Ethers . 120 6 5.3.3 Nitrogen . 124 5.3.4 Mixtures . 127 5.4 Conclusion . 128 Bibliography . 130 6 Conclusion 138 Appendices 140 A Supporting Information to Chapter 2 141 A.1 Further Vapor-Liquid Equilibria Results . 141 B Supporting Information to Chapter 3 145 B.1 Details of the Configurational Bias Scheme . 145 B.2 Self Term of the Original Shifted Force Wolf Summation . 146 B.3 Energy Conservation . 147 B.4 Stockmayer Fluid . 148 Bibliography . 152 C Supporting Information to Chapter 4 153 C.1 Tail Correction for the TAMie Force Field . 153 C.2 Pure Component Properties of Nitrogen from modified TraPPE Force Field 153 C.3 Pure Component Properties for Propane from TraPPE-EH Force Field . 154 C.4 Pure Component Properties for n-Pentane from TraPPE-EH Force Field . 158 C.5 Binary interaction parameters kij for the PCP-SAFT equation of state . 160 C.6 Comparison of segment-wise καβ and molecule-wise κij parameter . 160 C.7 Vapor-liquid equilibrium predictions for nitrogen/alkane mixtures . 163 Bibliography . 168 D Supporting Information to Chapter 5 170 D.1 Simulation Details . 171 D.2 Uncertainty of Results . 172 D.3 Results - Polarizable PTAMie Force Field . 173 D.4 Results - Non-Polarizable TAMie Force Field . 180 Bibliography . 190 7 List of symbols Latin letters AAD absolute average deviation C collection matrix cij; cαβ; cab prefactor of Mie potential CORR correlation coefficient D self diffusion coefficient E system energy Ei electric field 0 Ei static electric field ERR relative deviation F force fobj objective function H histogram / probability distribution ∆LV h enthalpy of evaporation I^ij Iαβ correlation integrals J 0 atomic "hardness" k force constant k reciprocal space vector kB Boltzmann constant kij binary interaction parameter of PC-SAFT L box length M net dipole moment mij attractive exponent of Mie potential m^ segment number of PC-SAFT n new state of Monte Carlo move n iteration step N number of molecules nij; nαβ; nab repulsive exponent of Mie potential o old state of Monte Carlo move scaling of simulation effort O p pressure P transition probability P molecular number probability Pxy pressure tensor q partial charge Q partition function 8 ∆qi(Rc) net-charge within cutoff sphere r distance Rc cutoff radius s reduced coordinate SD standard deviation T temperature Tij dipole-dipole interaction tensor u potential U 0 constant of fluctuating charge model v velocity V volume x mole fraction Greek letters α damping parameter of Wolf summation α polarizability β inverse temperature scaled with the Boltzmann constant β scaling parameter of mDSF method δn phase shift of torsional potential 0 vacuum permittivity r relative dielectric constant ij; αβ; ab energy parameter of Mie potential ^ii energy parameter PC-SAFT η shear viscosity θ bending angle κ Ewald splitting (damping) parameter κij; καβ; κab binary interaction parameter between interaction sites Λ de Broglie wavelength µ chemical potential µ dipole moment ξij binary interaction parameter between species πacc acceptance probability ρ charge density ρ molecule density σij; σαβ size parameter of Mie potential σ^ii segment diameter PC-SAFT τ time step φ torsional angle 9 φ electrostatic potential φij adjustable parameter for kαβ estimation χ0 electro-negativity i;ab intramolecular interaction operator ! weighting function for bias Ω observable Subscripts a; b indices for interaction sites bend bending angle c value at critical point c core CBMC configurational bias Monte Carlo D charge-on-spring / shell / Drude model eq equilibrium i; j indices for interaction site / molecule / species / segment i index for sate condition inter intermolecular intra intramolecular k index for molecule number windows l bond max maximum min minimum n periodicity n new state of Monte Carlo move o old state of Monte Carlo move vdW van der Waals I,II indices of boxes in Gibbs ensemble α; β indices for interaction site θ angle φ torsion Superscripts bias quantity obtained with bias Coulomb Coulombic energy Ewald Ewald summation exp experimental Gibbs Gibbs ensemble 10 l, L liquid phase long long-ranged mod modified opt optimal pol polarizable sat saturation self self interaction set training set short short-ranged sim simulation tot total v, V vapor phase Wolf Wolf summation * reduced variable Abbreviations COS charge-on-spring DSF damped shifted force DSP damped shifted potential MC Monte Carlo MD molecular dynamics mDSF modified damped shifted force mSF modified shifted force NpT isobaric-isothermal ensemble NVT canonical ensemble PC-SAFT Perturbed-Chain Statistical Associating Fluid Theory ref reference SF shifted force SP shifted potential UA united atom VLE vapor-liquid phase equilibrium µV T grand canonical ensemble 11 Zusammenfassung Die Vorhersage thermodynamischer Eigenschaften f¨urStoffe mit nicht ausreichenden oder fehlenden experimentellen Daten ist eine Grundvoraussetzung f¨urdie Auslegung vieler Prozesse, insbesondere in der chemischen Industrie. Molekulare Simulationen in Kom- bination mit ¨ubertragbaren Kraftfeldern erm¨oglichen solche Vorhersagen. In dieser Ar- beit werden hierf¨urMonte Carlo Simulationen im großkanonischen Ensemble verwendet um Dampf-Fl¨ussigPhasengleichgewichte zu berechnen. Die Qualit¨atder Vorhersagen ist dabei stark von der G¨utedes verwendeten Kraftfeldes abh¨angig. Elektrostatische Wechselwirkungen sind Teil der meisten Kraftfelder und erfordern rechenaufw¨andigeAl- gorithmen zur Auswertung. Deshalb wird eine effiziente sph¨arische Abschneidemethode entwickelt, die auf der Wolf Summe basiert, und die Energie als auch die Kr¨aftepr¨azise wiedergibt. Um bin¨areMischungen besser beschreiben zu k¨onnen wird außerdem die An- wendung und Ubertragbarkeit¨ von kreuzweisen van der Waals Energie Parametern unter- sucht. Die Simulationsergebnisse zeigen dabei eine ausgezeichnete Ubereinstimmung¨ mit experimentellen Daten. Des Weiteren wird ein polarisierbares Kraftfeld f¨urAlkane, Ether und Stickstoff entwickelt, welches die elektronische Polarisation

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    192 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us