Integral Representation of a Linear Functional on Function Spaces

Integral Representation of a Linear Functional on Function Spaces

<p>INTEGRAL REPRESENTATION OF LINEAR FUNCTIONALS ON <br>FUNCTION SPACES </p><p>MEHDI GHASEMI <br>Abstract. Let A be a vector space of real valued functions on a non-empty set X and L : A −→ R a linear functional. Given a σ-algebra A, of subsets of X, we present a necessary condition for L to be representable as an integral with respect to a measure µ on X such that elements of A are µ-measurable. This general result then is applied to the case where X carries a topological structure and A is a family of continuous functions and naturally A is the Borel structure of X. As&nbsp;an application, short solutions for the full and truncated K-moment problem are presented.&nbsp;An analogue of Riesz–Markov–Kakutani representation theorem is given where C<sub style="top: 0.083em;">c</sub>(X) is replaced with whole C(X). Then we consider the case where A only consists of bounded functions and hence is equipped with sup-norm. </p><p>1. Introduction </p><p>A positive linear functional on a function space A ⊆ R<sup style="top: -0.3012em;">X </sup>is a linear map L : <br>A −→ R which assigns a non-negative real number to every function f ∈ A that is globally non-negative over X. The&nbsp;celebrated Riesz–Markov–Kakutani representation theorem states that every positive functional on the space of continuous compactly supported functions over a locally compact Hausdorff space X, admits an integral representation with respect to a regular Borel measure on X. In&nbsp;symbols </p><p>R</p><p>L(f) =&nbsp;<sub style="top: 0.2952em;">X </sub>f dµ, for all f ∈ C<sub style="top: 0.1245em;">c</sub>(X). Riesz’s original result [12] was proved in 1909, for the unit interval [0, 1]. Then&nbsp;in 1938, Markov extended Riesz’s result to some non-compact spaces [9]. Later in 1941, Kakutani [8] proved the result for compact Hausdorff spaces.&nbsp;Some authors such as Pedersen [11, §6.1], take the reverse approach. Instead&nbsp;of defining an integral operator based on a pre-existing measure, he starts with a special type linear functionals. He calls the class of positive linear functionals on C<sub style="top: 0.1246em;">c</sub>(X), the “Radon integrals” and then fixing such a functional, defines integrable functions and the measure which corresponds to L. This approach has introduced and studied by P. J. Daniell in 1918 [4] and nowadays is known as Daniell integral theory. <br>Perhaps one of the most well-known consequences of Riesz’z result is its application to solve the classical moment problem, given by Haviland in 1936. Haviland published series of two papers [6, 7], and gave a complete solution for the K-moment problem. Let&nbsp;L : R[X] = R[X<sub style="top: 0.1245em;">1</sub>, . . . , X<sub style="top: 0.1245em;">n</sub>] −→ R be a linear functional on the space of real polynomials in n variables and K ⊆ R<sup style="top: -0.3013em;">n </sup>a closed set. The classical K-moment </p><p>Date: March 28, 2014. 2010 Mathematics Subject Classification. Primary 47A57, 28C05, 28E99; Secondary 44A60, <br>46J25. <br>Key words and phrases.&nbsp;topology, continuous functions, measure, integral representation, linear functional. </p><p>1</p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">M. GHASEMI </li></ul><p></p><p>problem asks when L admits an integral representation with respect to a Borel measure supported on K. Haviland proved that such a measure exists if and only if L maps every non-negative polynomial on K to a non-negative real number. Let us demystify the connection and similarity between these to results. <br>Fix a subspace A ⊆ R<sup style="top: -0.3012em;">X </sup>where X is a locally compact Hausdorff space and <br>K ⊆ X, a closed set.&nbsp;The set of all functions f ∈ A that are non-negative on K will be denoted by Psd<sub style="top: 0.1246em;">A</sub>(K): </p><p>Psd<sub style="top: 0.1245em;">A</sub>(K) := {f ∈ A : f(x) ≥ 0 ∀x ∈ K}. <br>Let L : A −→ R be a linear functional. For A = C<sub style="top: 0.1245em;">c</sub>(X), Riesz–Markov–Kakutani’s result is the following statement: </p><p>Theorem 1.1. There exists a Borel measure on X representing L if and only if </p><p>L(Psd<sub style="top: 0.1499em;">C (X)</sub>(X)) ⊆ [0, ∞). </p><p>c</p><p>Also, for K ⊆ R<sup style="top: -0.3013em;">n </sup>= X and A = R[X], Haviland’s theorem is the following: </p><p>Theorem 1.2. There exists a Borel measure on K representing L if and only if </p><p>L(Psd<sub style="top: 0.1499em;">R[X]</sub>(K)) ⊆ [0, ∞). <br>The proof of Haviland’s theorem relies on Riesz–Markov–Kakutani’s result and involves the following steps: <br>ˇ<br>(1) Extend&nbsp;L positively to the algebra A consisting of all continuous functions, </p><p>bounded by a polynomial on K. <br>ˇ<br>(2) Showing&nbsp;that A contains C<sub style="top: 0.1246em;">c</sub>(K). </p><p>(3) Applying&nbsp;Riesz–Markov–Kakutani representation theorem to the restriction of the map from step (1) on C<sub style="top: 0.1245em;">c</sub>(K). <br>(4) Proving&nbsp;that the measure obtained in step (3) also represents L on R[X]. </p><p>Suppose that µ is a finite Borel measure on X and let k · k<sub style="top: 0.1246em;">µ,1 </sub>be the seminorm induces by µ on L<sub style="top: 0.1245em;">1</sub>(µ). One&nbsp;can show that the characteristic function of every Borel set, can be approximated by compactly supported functions in k · k<sub style="top: 0.1245em;">µ,1</sub>. Therefore </p><ul style="display: flex;"><li style="flex:1">C<sub style="top: 0.1245em;">c</sub>(X) is dense in C<sub style="top: 0.1245em;">c</sub>(X)⊕S </li><li style="flex:1">where S </li><li style="flex:1">is the algebra of the simple functions, </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">B(X) </li><li style="flex:1">B(X) </li></ul><p></p><p>generated by characteristic functions of all Borel subset of X. On the other hand, simple functions are dense in L<sub style="top: 0.1246em;">1</sub>(µ) which implies the denseness of C<sub style="top: 0.1246em;">c</sub>(X) in L<sub style="top: 0.1246em;">1</sub>(µ). <br>In section 2, we generalize this idea to any abstract measure structures on X. In lemma 2.3(4) we prove an analogue of theorem 1.1 and will use this result to prove theorem 2.5 which is a general version of Haviland’s theorem 1.2. <br>In section 3, we consider perhaps the most interesting case, where the underlying domain consists of continuous functions.&nbsp;We presents short proofs for results of Choquet (Corollary 3.1) and Marshall (Corollary 3.3). Also we apply the results of section 2 to give a simple solution for truncated moment problem in §3.2. The Riesz–Markov–Kakutani representation theorem is stated for C<sub style="top: 0.1245em;">c</sub>(X) which easily generalizes to C<sub style="top: 0.1245em;">0</sub>(X), the space of functions vanishing at infinity. In §3.3 we investigate the case where the domain is extended to whole C(X) and show that in this case, the support of representing measure has to be compact set (Theorem 3.8). <br>In section 4, we focus on subalgebras of `<sup style="top: -0.3012em;">∞</sup>(X), the algebra of globally bounded functions. This&nbsp;algebra naturally is equipped with a norm topology, where the norm is defined by kfk<sub style="top: 0.1245em;">X </sub>= sup<sub style="top: 0.2029em;">x∈X </sub>|f(x)|. We prove that every continuous positive functional on a subalgebra A of `<sup style="top: -0.3012em;">∞</sup>(X), admits an integral representation with </p><ul style="display: flex;"><li style="flex:1">respect to a unique Radon measure on the Gelfand spectrum sp </li><li style="flex:1">(A) of (A, k·k<sub style="top: 0.1246em;">X </sub>). </li></ul><p></p><p>k·k<sub style="top: 0.0835em;">X </sub></p><p></p><ul style="display: flex;"><li style="flex:1">INTEGRAL REPRESENTATION OF FUNCTIONALS </li><li style="flex:1">3</li></ul><p></p><p>We also consider the possibility of existence of a representing measure on X, where X can be realised as a dense subspace of sp (A). </p><p>k·k<sub style="top: 0.0835em;">X </sub></p><p>2. Integral Representation of a Positive Functional </p><p>In this section we study integral representation of a linear functional on a subalgebra of R<sup style="top: -0.3013em;">X </sup>. We&nbsp;also prove a variation of Riesz representation theorem which holds for σ-compact, locally compact spaces and replaces C<sub style="top: 0.1245em;">0</sub>(X) with C(X) (Theorem </p><p>3.8). </p><p>The following result plays a key role in this section. </p><p>Theorem 2.1. Let W be a subspace of an R-vector space V and C ⊆ V a convex cone. Let&nbsp;L : W −→ R be a functional with L(W ∩ C) ≥ 0. Then&nbsp;L admits an </p><p></p><ul style="display: flex;"><li style="flex:1">˜</li><li style="flex:1">˜</li></ul><p></p><p>extension L on W<sub style="top: 0.1246em;">C </sub>such that L(W<sub style="top: 0.1246em;">C </sub>∩ C) ≥ 0. Here </p><p>W<sub style="top: 0.1246em;">C </sub>= {v ∈ V : ±v ∈ C + W}. </p><p>Proof. It is clear that W<sub style="top: 0.1246em;">C </sub>is a subspace of V containing W. We&nbsp;show that the function p(v) = − sup{L(w) : w ∈ W ∧ v − w ∈ C} which is defined on W<sub style="top: 0.1246em;">C </sub>is a sublinear function such that p|<sub style="top: 0.1245em;">W </sub>= −L. To see this note that there are w, w<sup style="top: -0.3013em;">0 </sup>∈ W and c, c<sup style="top: -0.3013em;">0 </sup>∈ C such that v = w+c = w<sup style="top: -0.3013em;">0 </sup>−c<sup style="top: -0.3013em;">0</sup>. Thus&nbsp;w<sup style="top: -0.3013em;">0 </sup>−w = c+c<sup style="top: -0.3013em;">0 </sup>∈ C ∩W and hence L(w<sup style="top: -0.3012em;">0 </sup>− w) ≥ 0 or L(w) ≤ L(w<sup style="top: -0.3012em;">0</sup>). Therefore&nbsp;the set {L(w) : w ∈ W ∧ v − w ∈ C} is non-empty and bounded above.&nbsp;Hence p(v) exists.&nbsp;Clearly p(λv) = λp(v), so it remains to show that p(v + v<sup style="top: -0.3012em;">0</sup>) ≤ p(v) + p(v<sup style="top: -0.3012em;">0</sup>). If v − w ∈ C and v<sup style="top: -0.3012em;">0 </sup>− w<sup style="top: -0.3012em;">0 </sup>∈ C, then (v + v<sup style="top: -0.3013em;">0</sup>) − (w + w<sup style="top: -0.3013em;">0</sup>) ∈ C + C = C. Thus −p(v) − p(v<sup style="top: -0.3013em;">0</sup>) ≤ −p(v + v<sup style="top: -0.3013em;">0</sup>) or equivalently p(v + v<sup style="top: -0.3013em;">0</sup>) ≤ p(v) + p(v<sup style="top: -0.3013em;">0</sup>). For every v ∈ W, 0 = v − v ∈ C, therefore p(v) ≤ −L(v). Also for every w ∈ W with v−w ∈ C, we have L(w) ≤ L(v), because L(W ∩C) ≥ 0. Therefore −L(v) ≤ p(v) which proves p|<sub style="top: 0.1245em;">W </sub>= −L. <br>˜<br>Applying Hahn-Banach theorem, −L admits an extension −L to W<sub style="top: 0.1245em;">C </sub>such that </p><p></p><ul style="display: flex;"><li style="flex:1">˜</li><li style="flex:1">˜</li></ul><p>−L(v) ≤ p(v) on W<sub style="top: 0.1246em;">C</sub>. For&nbsp;c ∈ C ∩ W<sub style="top: 0.1246em;">C</sub>, p(c) ≤ 0 and hence 0 ≤ −p(c) ≤ L(c) as </p><p>desired (For the original result, see [2, Theorem 34.2]). </p><p>ꢀ</p><p>Definition 2.2. For a vector subspace A of R<sup style="top: -0.3012em;">X </sup>, <br>(1) The&nbsp;set of all elements of A that are positive on X is denoted by Psd<sub style="top: 0.1246em;">A</sub>(X). <br>Psd<sub style="top: 0.1245em;">A</sub>(X) = {a ∈ A : ∀x ∈ X a(x) ≥ 0}; <br>ˇ<br>(2) The&nbsp;lattice hull of A denote by A is defined to be </p><p>X</p><p>ˇ</p><p>A := {f ∈ R : ∃g ∈ A |f| ≤ |g|}. </p><p>ˇ<br>A is said to be lattice complete if A = A. </p><p>(3) Let B ⊆ R<sup style="top: -0.3012em;">X </sup>be a vector subspace of R<sup style="top: -0.3012em;">X</sup>. For&nbsp;f, g&nbsp;∈ A, we say g is </p><p>dominated by f with respect to B and write g 4<sub style="top: 0.1246em;">B </sub>f if </p><p>∀ꢀ &gt; 0 ∃h ∈ B |g| ≤ ꢀ|f| + h. </p><p>We say A is B-adapted if ∀g ∈ A ∃f ∈ A such that g 4<sub style="top: 0.1245em;">B </sub>f. <br>(4) For&nbsp;an algebra A of subsets of X, we denote by S , the algebra generated </p><p>A</p><p>1</p><p>by characteristic functions of elements of A . </p><p>1</p><p>χ<sub style="top: 0.1116em;">Y </sub>denotes the character function of the set Y defined by χ<sub style="top: 0.1116em;">Y </sub>(x) = 1 if x ∈ Y and 0 otherwise. </p><p></p><ul style="display: flex;"><li style="flex:1">4</li><li style="flex:1">M. GHASEMI </li></ul><p></p><p>(5) The set of all (infinite) sums of simple functions that are bounded above </p><p>A</p><p></p><ul style="display: flex;"><li style="flex:1">by an element of A in absolute value will be denoted by S </li><li style="flex:1">,</li></ul><p></p><p>A</p><ul style="display: flex;"><li style="flex:1">∞</li><li style="flex:1">∞</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">X</li><li style="flex:1">X</li></ul><p></p><p>A</p><p>S</p><p>:= { </p><p></p><ul style="display: flex;"><li style="flex:1">λ<sub style="top: 0.1245em;">i</sub>χ<sub style="top: 0.1245em;">X </sub>: X<sub style="top: 0.1245em;">i </sub>∈ A ∧ ∃a ∈ A </li><li style="flex:1">|</li></ul><p></p><p>λ<sub style="top: 0.1245em;">i</sub>χ<sub style="top: 0.1245em;">X </sub>| ≤ a}. </p><p>A</p><p></p><ul style="display: flex;"><li style="flex:1">i</li><li style="flex:1">i</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">i=1 </li><li style="flex:1">i=1 </li></ul><p></p><p>A</p><p></p><ul style="display: flex;"><li style="flex:1">It is clear that S </li><li style="flex:1">is a vector space. </li></ul><p></p><p>A</p><p>Lemma 2.3. Let A be a σ-algebra of subsets of X, B a lattice complete algebra of A-measurable functions for which every χ<sub style="top: 0.1246em;">Y </sub>, Y ∈ A is bounded above in B and L : B −→ R a positive functional. Then </p><p>¯</p><p>(1) L extends positively to a linear functional L : B + S −→ R (and also to </p><p>A</p><p>B + S <sup style="top: -0.5281em;">B</sup>); </p><p>A</p><p>¯</p><p>(2) the function ρ<sub style="top: 0.1246em;">L</sub>(f) = L(|f|) (resp. ρ<sub style="top: 0.1947em;">L</sub><sub style="top: 0.0477em;">¯ </sub>= L(|f|)) defines a seminorm on B <br>(resp. on B + S ); </p><p>A</p><p>B</p><p></p><ul style="display: flex;"><li style="flex:1">(3) every function f ∈ B can be approximated by elements of S </li><li style="flex:1">from below, </li></ul><p></p><p>A</p><p>in ρ<sub style="top: 0.1947em;">L</sub><sub style="top: 0.0477em;">¯</sub>; <br>(4) if B is dense in (B +S ,&nbsp;ρ<sub style="top: 0.0477em;">¯</sub>), then there exists a measure µ on (X, A) such </p><p>A</p><p>L</p><p>that </p><p>Z</p><p>∀f ∈ Psd<sub style="top: 0.1245em;">B</sub>(X) L(f) =&nbsp;f dµ. <br>Proof. (1) Let V = B +S and C = Psd<sub style="top: 0.1245em;">V </sub>(X). It suffices to show that V = B +C, </p><p>A</p><p>then the conclusion follows from theorem 2.1. A&nbsp;typical element of V is of the </p><p>P</p><p>n</p><p>i=1 </p><p>form b + λ<sub style="top: 0.1246em;">i</sub>χ<sub style="top: 0.1246em;">Y </sub>, b ∈ B, Y<sub style="top: 0.1246em;">i </sub>∈ A and λ<sub style="top: 0.1246em;">i </sub>∈ R, for i = 1, . . . , n. By&nbsp;assumption, </p><p>i</p><p>P</p><p>n</p><p>for each i = 1, . . . , n, there is b<sub style="top: 0.1245em;">i </sub>∈ B with χ<sub style="top: 0.1245em;">Y </sub>≤ b<sub style="top: 0.1245em;">i</sub>. Take&nbsp;b<sup style="top: -0.3012em;">0 </sup>= <sub style="top: 0.2491em;">i=1 </sub>|λ<sub style="top: 0.1245em;">i</sub>|b<sub style="top: 0.1245em;">i</sub>, then </p><p>i</p><p>P</p><p>n</p><p>i=1 </p><p>b<sup style="top: -0.3013em;">0 </sup>± </p><p>λ<sub style="top: 0.1245em;">i</sub>χ<sub style="top: 0.1245em;">Y </sub>∈ C and </p><p>i</p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">n</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">X</li><li style="flex:1">X</li></ul><p></p><p>b ± </p><p>λ<sub style="top: 0.1245em;">i</sub>χ<sub style="top: 0.1245em;">Y </sub>= (b − b<sup style="top: -0.3428em;">0</sup>) + (b<sup style="top: -0.3428em;">0 </sup>± </p><p>λ<sub style="top: 0.1245em;">i</sub>χ<sub style="top: 0.1245em;">Y </sub>) ∈ B + C. </p><p></p><ul style="display: flex;"><li style="flex:1">i</li><li style="flex:1">i</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">i=1 </li><li style="flex:1">i=1 </li></ul><p></p><p>B</p><p>Therefore V = B + C as desired.&nbsp;Now let V = B + A and C = Psd<sub style="top: 0.1245em;">V </sub>(X). </p><p></p><ul style="display: flex;"><li style="flex:1">P<sub style="top: 0.2053em;">∞ </sub></li><li style="flex:1">P<sub style="top: 0.2053em;">∞ </sub></li></ul><p></p><p>For b ± </p><p>i=1 </p><p>λ<sub style="top: 0.1245em;">i</sub>χ<sub style="top: 0.1245em;">X </sub>, there exists b<sup style="top: -0.3013em;">0 </sup>∈ B such that | </p><p>λ<sub style="top: 0.1245em;">i</sub>χ<sub style="top: 0.1245em;">X </sub>| &lt; b<sup style="top: -0.3012em;">0</sup>, so b<sup style="top: -0.3012em;">0 </sup>± </p><p></p><ul style="display: flex;"><li style="flex:1">i</li><li style="flex:1">i</li></ul><p></p><p>i=1 </p><p>λ<sub style="top: 0.1245em;">i</sub>χ<sub style="top: 0.1245em;">X </sub>∈ C and </p><p>i=1 </p><p>P<sub style="top: 0.2053em;">∞ </sub></p><p>i</p><p></p><ul style="display: flex;"><li style="flex:1">∞</li><li style="flex:1">∞</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">X</li><li style="flex:1">X</li></ul><p></p><p>b + </p><p>λ<sub style="top: 0.1245em;">i</sub>χ<sub style="top: 0.1245em;">X </sub>= (b − b<sup style="top: -0.3428em;">0</sup>) + (b<sup style="top: -0.3428em;">0 </sup>± </p><p>λ<sub style="top: 0.1245em;">i</sub>χ<sub style="top: 0.1245em;">X </sub>) ∈ B + C, </p><p></p><ul style="display: flex;"><li style="flex:1">i</li><li style="flex:1">i</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">i=1 </li><li style="flex:1">i=1 </li></ul><p></p><p>and the conclusion follows from theorem 2.1. <br>(2) This is clear.&nbsp;Since B is lattice complete, it contains absolute value of its elements (note that absolute value of an A-measurable function is A-measurable as well).&nbsp;Therefore by positivity of L we see ρ<sub style="top: 0.1245em;">L</sub>(rf) = |r|L(|f|) = |r|ρ<sub style="top: 0.1245em;">L</sub>(f) and ρ<sub style="top: 0.1245em;">L</sub>(f + g) = L(|f + g|) ≤ L(|f| + |g|) = L(|f|) + L(|g|) = ρ<sub style="top: 0.1245em;">L</sub>(f) + ρ<sub style="top: 0.1245em;">L</sub>(g). <br>(3) Fix f ∈ B and ꢀ &gt; 0. First suppose that f(X) is bounded. This means that there are a &lt; b ∈ R such that for every x ∈ X, a ≤ f(x) &lt; b. Let&nbsp;n ≥ 1 be an integer and define </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">b − a </li><li style="flex:1">b − a </li></ul><p></p><p>X<sub style="top: 0.1245em;">k </sub>:= f<sup style="top: -0.3428em;">−1 </sup>[a + (k − 1) </p><p>, a + k </p><p>)</p><p></p><ul style="display: flex;"><li style="flex:1">,</li><li style="flex:1">k = 1, . . . , n. </li></ul><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">n</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">INTEGRAL REPRESENTATION OF FUNCTIONALS </li><li style="flex:1">5</li></ul><p></p><p>P</p><p>n</p><p>k=1 </p><p>b−a </p><p></p><ul style="display: flex;"><li style="flex:1">Each X<sub style="top: 0.1246em;">k </sub>is A-measurable. Take φ = </li><li style="flex:1">(k −1)χ<sub style="top: 0.1246em;">X </sub>, this is clear that φ(x) ≤ </li></ul><p></p><p>k</p><p>n</p><ul style="display: flex;"><li style="flex:1">b−a </li><li style="flex:1">b−a </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">¯</li><li style="flex:1">¯</li></ul><p></p><ul style="display: flex;"><li style="flex:1">L(1). </li><li style="flex:1">f(x) for all x ∈ X and 0 ≤ f(x) − φ(x) &lt; </li><li style="flex:1">. Therefore 0 ≤ L(f − φ) ≤ </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">n</li></ul><p>b−a </p><p></p><ul style="display: flex;"><li style="flex:1">¯</li><li style="flex:1">¯</li></ul><p></p><ul style="display: flex;"><li style="flex:1">Choose n big enough such that </li><li style="flex:1">L(1) &lt; ꢀ, we will have ρ<sub style="top: 0.1947em;">L</sub><sub style="top: 0.0477em;">¯</sub>(f −φ) = L(f −φ) &lt; ꢀ. </li></ul><p></p><p>n</p><p>Now take an arbitrary f ∈ B and let {[a<sub style="top: 0.1246em;">i</sub>, b<sub style="top: 0.1246em;">i</sub>)}<sub style="top: 0.1246em;">i∈N </sub>be a partition of R and ꢀ &gt; 0. <br>Since B is lattice complete and |χ<sub style="top: 0.1499em;">[a ,b )</sub>f| ≤ |f|, we see that χ<sub style="top: 0.1499em;">[a ,b )</sub>f ∈ B. For&nbsp;every </p><p></p><ul style="display: flex;"><li style="flex:1">i</li><li style="flex:1">i</li><li style="flex:1">i</li><li style="flex:1">i</li></ul><p></p><p>i ∈ N, there exists φ<sub style="top: 0.1245em;">i </sub>∈ S such that ρ<sub style="top: 0.0477em;">¯</sub>(χ </p><p>f − φ<sub style="top: 0.1245em;">i</sub>) &lt; 2<sup style="top: -0.3012em;">−i</sup>ꢀ and φ<sub style="top: 0.1245em;">i </sub>≤ χ<sub style="top: 0.1499em;">[a ,b )</sub>f. </p><p>A</p><p>[a<sub style="top: 0.083em;">i</sub>,b<sub style="top: 0.083em;">i</sub>) </p><p>L</p><p></p><ul style="display: flex;"><li style="flex:1">i</li><li style="flex:1">i</li></ul><p></p><p>P<sub style="top: 0.2053em;">∞ </sub></p><p>B</p><p></p><ul style="display: flex;"><li style="flex:1">Let ψ = </li><li style="flex:1">φ<sub style="top: 0.1246em;">i</sub>, then |ψ| ≤ |f| on X, so ψ ∈ S </li><li style="flex:1">and </li></ul><p></p><p>A</p><p>i=1 </p><p>P<sub style="top: 0.2053em;">∞ </sub></p><p>ρ<sub style="top: 0.1947em;">L</sub><sub style="top: 0.0477em;">¯</sub>(f − ψ) </p><p>=</p><p>≤</p><p>&lt;</p><p>=ρ<sub style="top: 0.1947em;">L</sub><sub style="top: 0.0477em;">¯</sub>( </p><p>χ<sub style="top: 0.1499em;">[a ,b )</sub>f − φ<sub style="top: 0.1245em;">i</sub>) </p><p></p><ul style="display: flex;"><li style="flex:1">i</li><li style="flex:1">i</li></ul><p></p><p>i=1 </p><p>ρ<sub style="top: 0.0477em;">¯</sub>(χ </p><p>P<sub style="top: 0.2053em;">∞ </sub></p><p>f − φ<sub style="top: 0.1246em;">i</sub>) </p><p>[a<sub style="top: 0.083em;">i</sub>,b<sub style="top: 0.083em;">i</sub>) </p><p>L</p><p>i=1 </p><p>P<sub style="top: 0.2053em;">∞ </sub></p><p><sub style="top: 0.2491em;">i=1 </sub>2<sup style="top: -0.3012em;">−i</sup>ꢀ </p><p>ꢀ, </p><p>as desired. <br>¯<br>(4) Let L be the functional from part (1) and {Y<sub style="top: 0.1245em;">n</sub>}<sub style="top: 0.1245em;">n </sub>⊂ A a sequence of pairwise </p><p>P<sub style="top: 0.2053em;">∞ </sub></p><p>¯</p><ul style="display: flex;"><li style="flex:1">χ<sub style="top: 0.1246em;">Y </sub>. Since&nbsp;L is positive, </li><li style="flex:1">disjoint sets.&nbsp;Then Y = ∪<sub style="top: 0.1246em;">n</sub>Y<sub style="top: 0.1246em;">n </sub>∈ A and χ<sub style="top: 0.1246em;">Y </sub></li><li style="flex:1">=</li></ul><p>χ<sub style="top: 0.1246em;">Y </sub>) = L(χ<sub style="top: 0.1246em;">Y </sub>). The sequence (L( </p><p>n</p><p>n=1 </p><p>P</p><p></p><ul style="display: flex;"><li style="flex:1">P<sub style="top: 0.2053em;">∞ </sub></li><li style="flex:1">P<sub style="top: 0.2053em;">∞ </sub></li></ul><p></p><p>n</p><p>1</p><p>¯L(χ<sub style="top: 0.1246em;">Y </sub>) + L( </p><ul style="display: flex;"><li style="flex:1">¯</li><li style="flex:1">¯</li><li style="flex:1">¯</li></ul><p></p><ul style="display: flex;"><li style="flex:1">0 ≤ </li><li style="flex:1">χ<sub style="top: 0.1246em;">Y </sub>))<sub style="top: 0.1246em;">n </sub>is positive </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">i</li><li style="flex:1">i</li><li style="flex:1">i</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">n+1 </li><li style="flex:1">n+1 </li></ul><p></p><p>and decreasing and hence convergent. Thus for any ꢀ &gt; 0, there exists N &gt; 0 such that for any n &gt; m &gt; N, </p><p></p><ul style="display: flex;"><li style="flex:1">P<sub style="top: 0.2053em;">∞ </sub></li><li style="flex:1">P<sub style="top: 0.2053em;">∞ </sub></li></ul><p></p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    11 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us