Atomic Spectra in Astrophysics

Atomic Spectra in Astrophysics

Atomic Spectra in Astrophysics Lida Oskinova, Helge Todt Astrophysik Institut für Physik und Astronomie Universität Potsdam WiSe 2016/2017 L. Oskinova, H. Todt (UP) Atomic Spectra in Astrophysics WiSe 2016/2017 1 / 142 The Hydrogen Atom L. Oskinova, H. Todt (UP) Atomic Spectra in Astrophysics WiSe 2016/2017 2 / 142 Contents importance of hydrogen, origin the hydrogen spectrum (brief) history of atom models quantum mechanics and solution of the central-force problem L. Oskinova, H. Todt (UP) Atomic Spectra in Astrophysics WiSe 2016/2017 3 / 142 Hydrogen discovered 1766 by Cavendish (metal + acid), and found as constituent of water by de Lavoisir (1787) ! hydrogen = generator of water simplest atom: proton & electron - mass 1:6738 × 10−27 kg Eion ≈ 13:6 eV isotopes: deuterium (1 neutron) and tritium (2 neutrons) origin: Big Bang; deuterium from primordial nucleosynthesis (1 min after BB at 60 MK ^= 80 keV); recombination at 378 000 yr (z = 1100) ! transparent universe fuel for stars (fusion) via proton-proton chain reaction or CNO cycle L. Oskinova, H. Todt (UP) Atomic Spectra in Astrophysics WiSe 2016/2017 4 / 142 The hydrogen spectrumI Spectrum of a Balmer lamp: ! low pressure gas-discharge tube (H. Geißler 1857) filled with hydrogen Ångström (1862): spectral lines of hydrogen in spectrum of sun L. Oskinova, H. Todt (UP) Atomic Spectra in Astrophysics WiSe 2016/2017 5 / 142 The hydrogen spectrumII Balmer (1885): spectral lines of hydrogen given by hm2 λ = (n = 2; m = 3; 4; 5;:::) (1) m2 − n2 with h = 3645:6 × 10−10 m and 10−10 m = 1 Å, typical size of an atom predicted lines for m > were found in A stars Rydberg (1888): generalization to other series 1 1 1 7 −1 = RH 2 − 2 ; RH = 1:096775854 × 10 m (2) λ n1 n2 generalization to H-like ions (e.g. He II, Li III): 1 2 1 1 = Z RX 2 − 2 (3) λ n1 n2 L. Oskinova, H. Todt (UP) Atomic Spectra in Astrophysics WiSe 2016/2017 6 / 142 Atom modelsI Parmenides (500 v. Chr.): atoms (indivisible) as building blocks of the world J. Dalton (1803): chemical elements consist of atoms of different mass L. Oskinova, H. Todt (UP) Atomic Spectra in Astrophysics WiSe 2016/2017 7 / 142 Atom modelsII J.J. Thomson (1900): atoms contain negatively charged electrons in a positively charged continuum (cathode rays experiments) L. Oskinova, H. Todt (UP) Atomic Spectra in Astrophysics WiSe 2016/2017 8 / 142 Atom models III Rutherford (1910): positively charged nucleus is smaller (10−15 m) than atom (scattering of helium nuclei on gold foil) Problems of Rutherford model Why do electrons not fall into nucleus? ! circular orbit Why don’t they emit like electric dipole, what about spectral lines? ! Bohr model L. Oskinova, H. Todt (UP) Atomic Spectra in Astrophysics WiSe 2016/2017 9 / 142 Bohr modelI Bohr’s postulates (1913) to explain observations: Motion of electrons in atoms obeys quantum rules 1 Electrons orbit in atoms the nucleus on so-called stationary orbits with discrete energies En. (The angular momentum is restricted to integer multiples of a fixed unit L = n~ (n = 1; 2; 3;:::).) 2 Atoms can only gain or lose energy by the transition of an electron from one stationary orbit to another stationary orbit, this energy is discrete and given by ∆E = En − En+1 = hν for the involved photon of frequency ν. Postulate (1) can be also written as phase space integral 1 I pdq = n (n = 1; 2; 3;:::) (4) 2π ~ L. Oskinova, H. Todt (UP) Atomic Spectra in Astrophysics WiSe 2016/2017 10 / 142 Bohr modelII Application to the hydrogen atom: Electron orbits in a Coulomb potential (polar coordinates) with Ze2 F = − 2 (5) 4π"0rn with stationary radius rn, balanced by centrifugal force 2 vn 2 Fz = mr = mrrn!n (6) rn with reduced mass mr so that 0 is in nucleus with mass mc m2 me mr = = (7) 1 + m2 1 + me m1 mc Force balance yields 2 Ze 2 2 = mrrn!n (8) 4π"0rn L. Oskinova, H. Todt (UP) Atomic Spectra in Astrophysics WiSe 2016/2017 11 / 142 Bohr model III As vn = rn!n the momentum and position are pn = mrvn = mrrn!n; qn = rnφn (9) I Z 2π 1 1 2 2 pndqn = mrrn !n dφ = mrrn !n = n~ (10) 2π 2π 0 n~ ! !n = 2 (n = 1; 2; 3;:::) (11) mrrn Inserting force balance to elimnate !n: 2 2 4πn ~ "0 rn = 2 (n = 1; 2; 3;::: ) (12) Zmre Z 2m e4 ! = r (13) n 2 3 3 2 16π n ~ "0 L. Oskinova, H. Todt (UP) Atomic Spectra in Astrophysics WiSe 2016/2017 12 / 142 Bohr modelIV This can be used to obtain the kinetic energy of the electron m m Z 2m e4 E = r v 2 = r r 2!2 = r (14) kin n n n 2 2 2 2 2 2 32π n ~ "0 Its potential energy is given by qV (r) = − R Fdr: Ze2 Z 2m e4 E = − = − r (15) pot 2 2 2 2 4π"0rn 16π n ~ "0 L. Oskinova, H. Todt (UP) Atomic Spectra in Astrophysics WiSe 2016/2017 13 / 142 Bohr modelV both forces are conservative forces, ! conservation of energy and the energy levels are therefore Z 2m e4 E = E + E = − r (16) n kin pot 2 2 2 2 32π n ~ "0 2 4 Z me e = − (n = 1; 2; 3;:::) (17) 32π2n2 2"2 1 + me ~ 0 mc from 2nd Bohr’s postulate (∆E = hν) and by ν = c/λ: 1 Z 2m e4 1 1 = e − (18) m 2 2 λ 32π2c"2 1 + e n1 n2 0 mc L. Oskinova, H. Todt (UP) Atomic Spectra in Astrophysics WiSe 2016/2017 14 / 142 Bohr modelVI 94 nm Lyman series 95 nm 97 nm 103 nm 122 nm 656 nm486 nm 434 nm n = 1 410 nm Balmer series 1875 nm n = 2 1282 nm n = 3 1094 nm n = 4 n = 5 n = 6 −1 1 1 λ = 911:8 Å 2 − 2 n1 n2 L. Oskinova, H. Todt (UP) Atomic Spectra in Astrophysics WiSe 2016/2017 15 / 142 Bohr model VII 2 2 2 comparison to Rydberg’s formula 1/λ = Z RX 1=n1 − 1=n2 for hydrogen-like atoms suggests: R R = 1 (19) X 1 + me mc m e4 R = e = 1:097373177 × 107m−1 (20) 1 2 2 32π c"0 Application: Pickering lines of He II ! blackboard note: R1 sometimes used for atomic energies L. Oskinova, H. Todt (UP) Atomic Spectra in Astrophysics WiSe 2016/2017 16 / 142 Bohr model VIII Problems and limits of Bohr model Experiments: H-like spectra of alkali metals need more than one quantum number for discription (e.g. Na D line ≈ 5890 Å transition 3s − 3p) no explanation of other spectra Theory: Heisenberg’s uncertainty principle contradicts electron orbits Street light using ! blackboard sodium lamp. Orange light from Na D line L. Oskinova, H. Todt (UP) Atomic Spectra in Astrophysics WiSe 2016/2017 17 / 142 The Schrödinger equationI wave equation, used for explanation of hydrogen spectrum Schrödinger (1926) @ { j (t)i = H^ j (t)i (21) ~@t @ 2 e.g. { (~r; t) = − ~ ∆ + V (~r; t) (~r; t) (22) ~@t 2m derived from de Broglie and dispersion relation: p = ~k and E = ~! describes unperturbed evolution in time of non-relativistic quantum systems, linear PDE of 2nd order with complex solutions linearity: superposition principle of solutions probability of presence (find particle at position x): j (~r; t)j2 L. Oskinova, H. Todt (UP) Atomic Spectra in Astrophysics WiSe 2016/2017 18 / 142 The Schrödinger equationII Stationary Schrödinger Eq. (@=@t = 0 ), separation: (~r; t) = '(~r) f (t) ! blackboard H^ '(~r) = E'(~r) (23) −{ E t (x; t) = '(x) e ~ (24) with eigenvalues E (energy) of Hamilton operator: the probability density j (x; t)j2 = j (x)j2 (Why?) does not depend on t, same holds for expectation values of dynamic variables p2 as H(x; p) = 2m + V (x) is classical Hamiltonian ≡ total energy ! hHi = E (Why?) general solution is a linear combination of separable solutions: 1 X −{Ent=~ (x; t) = cn n(x)e (25) n=1 L. Oskinova, H. Todt (UP) Atomic Spectra in Astrophysics WiSe 2016/2017 19 / 142 The Central-force problemI 3D: Potential is of form V (~r) = V (j~rj) The Laplace operator in 3D for spherical coordinates: 1 @ @ 1 @ @ 1 @2 ∆ = r 2 + sin θ + (26) r 2 @r @r r 2 sin θ @θ @θ r 2 sin2 θ @φ2 Use separation: '(r; θ; φ) = R(r) · Y (θ; φ), thus 2 Y @ @R 2 1 @ @Y 2 R @2Y − ~ r 2 − ~ R sin θ − ~ 2m r 2 @r @r 2m r 2 sin θ @θ @θ 2m r 2 sin2 θ @φ2 + V (r) RY = ERY (27) with eigenvalue E L. Oskinova, H. Todt (UP) Atomic Spectra in Astrophysics WiSe 2016/2017 20 / 142 The Angular EquationI 2 1 Multiply ·r , and RY , again: obtain another separation constant 2 1 @ @R 2 1 @ @Y − ~ r 2 + r 2V (r) − Er 2 = ~ sin θ (28) 2m R @r @r 2m Y sin θ @θ @θ 2 1 @2Y + ~ 2m Y sin2 θ @φ2 2 = ~ [−`(` + 1)] (29) 2m Next separation: Y (θ; φ) = Θ(θ) · Φ(φ) Φ @ @Θ Θ @2Φ sin θ + = −`(` + 1) (30) ΘΦ sin θ @θ @θ ΘΦ sin2 θ @φ2 L. Oskinova, H. Todt (UP) Atomic Spectra in Astrophysics WiSe 2016/2017 21 / 142 The Angular EquationII term Φ=Φ and Θ=Θ cancels out, multiply sin2 θ 1 @ @Θ 1 @2Φ sin θ sin θ + `(` + 1) sin2 θ = − = m2 (31) Θ @θ @θ Φ @φ2 with new separation constant m: @2Φ + m2Φ = 0 ) solution: Φ(φ) = e±{mφ (32) @φ2 as rotation around φ = 2π in space means same as original state: Φ(φ + 2π) =! Φ(φ) ) m = 0; ±1; ±2;::: (33) L.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    142 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us