MULTIPHYSICS DESIGN and SIMULATION of a TUNGSTEN-CERMET NUCLEAR THERMAL ROCKET a Thesis by BRAD APPEL Submitted to the Office O

MULTIPHYSICS DESIGN and SIMULATION of a TUNGSTEN-CERMET NUCLEAR THERMAL ROCKET a Thesis by BRAD APPEL Submitted to the Office O

MULTIPHYSICS DESIGN AND SIMULATION OF A TUNGSTEN-CERMET NUCLEAR THERMAL ROCKET A Thesis by BRAD APPEL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2012 Major Subject: Nuclear Engineering Multiphysics Design and Simulation of a Tungsten-Cermet Nuclear Thermal Rocket Copyright 2012 Brad Appel ii MULTIPHYSICS DESIGN AND SIMULATION OF A TUNGSTEN-CERMET NUCLEAR THERMAL ROCKET A Thesis by BRAD APPEL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Karen Vierow Committee Members, Shannon Bragg-Sitton Paul Cizmas Head of Department, Yassin Hassan August 2012 Major Subject: Nuclear Engineering iii iii ABSTRACT Multiphysics Design and Simulation of a Tungsten-Cermet Nuclear Thermal Rocket. (August 2012) Brad Appel, B.S., Purdue University Chair of Advisory Committee: Dr. Karen Vierow The goal of this research is to apply modern methods of analysis to the design of a tungsten-cermet Nuclear Thermal Rocket (NTR) core. An NTR is one of the most viable propulsion options for enabling piloted deep-space exploration. Concerns over fuel safety have sparked interest in an NTR core based on tungsten-cermet fuel. This work investigates the capability of modern CFD and neutronics codes to design a cermet NTR, and makes specific recommendations for the configuration of channels in the core. First, the best CFD practices available from the commercial package Star-CCM+ are determined by comparing different modeling options with a hot-hydrogen flow experiment. Next, through grid convergence and sensitivity studies, numerical uncertainty is shown to be a small contributor to overall uncertainty; while fuel thermal conductivity, hydrogen specific heat, and fission energy deposition are found to have a large impact on simulation uncertainty. The model-form error is then estimated by simulation of a NERVA fuel element from an NRX-A6 engine test, where the peak temperature matches measured data to within 2.2%. Using a combination of Star-CCM+ iii iv and MCNP for neutronics, typical uncertainties are estimated at 3% for predicting fuel temperature, 2% for hydrogen temperature, and 5% for pressure. The second part uses the aforementioned analysis methods in a parametric study to determine what coolant channel size and distribution is optimum for a 10 klbf-thrust cermet NTR core. By varying the channel diameter and pitch-to-diameter ratio (p/d), it is found that a diameter of 0.12 cm with a p/d of 1.8 results in the lightest core with a peak temperature of 2850 K. The study also shows that element-by-element mass flow rate zoning is the best method for handling radial power peaking. In addition, a detailed simulation of a cermet design developed at the Argonne National Laboratory shows that modifications to the historical fuel element design are required to avoid overheating. The final part investigates the ability of Star-CCM+ to model fuel element failure modes. Through a combination of uncertainty quantification and a parametric analysis, this thesis ultimately lays a groundwork for future detailed design of cermet NTR fuel elements. iv v DEDICATION To my father. v vi ACKNOWLEDGEMENTS I would first like to thank my advisor, Dr. Karen Vierow, for her guidance and support throughout the research process. I owe many thanks to Dr. Shannon Bragg-Sitton for introducing me to the nuclear-space field, and supporting me in many endeavors over the past two years. I would also like to thank Dr. Jonathan Webb at the Idaho National Laboratory for his invaluable technical guidance, and James Werner for his advice and support. I am also thankful to Dr. Paul Cizmas for his help and technical advice. Finally, I would like to thank the many IT workers who make computational research possible, most notably Tami Grimmett at INL and Cory Hearnsberger at Texas A&M. vi vii TABLE OF CONTENTS Page ABSTRACT ...................................................................................................................... iii DEDICATION ................................................................................................................... v ACKNOWLEDGEMENTS .............................................................................................. vi TABLE OF CONTENTS ................................................................................................. vii LIST OF FIGURES............................................................................................................ x LIST OF TABLES .......................................................................................................... xiv 1. INTRODUCTION ...................................................................................................... 1 1.1 Objectives .................................................................................................... 4 1.2 Significance of Work ................................................................................... 5 2. NUCLEAR THERMAL ROCKET OVERVIEW .................................................... 10 2.1 History ..................................................................................................... 10 2.2 Conceptual Design .................................................................................. 11 2.3 Motivation for the Cermet Fuel .............................................................. 14 2.4 Previous Cermet-NTR Development Programs ...................................... 15 2.5 Historical Methods of Analysis............................................................... 16 3 ANALYSIS METHODS .......................................................................................... 21 3.1 Parameters of Interest ............................................................................. 21 3.2 Important Thermal-Fluid Phenomena .................................................... 24 3.3 Operating Principles of Star-CCM+ ....................................................... 27 3.4 Material Properties ................................................................................. 29 3.4.1 Hydrogen Properties .................................................................. 29 3.4.2 Fuel Properties ...................................................................... 36 3.5 Important Neutronics Phenomena ......................................................... 38 3.6 Operating Principle of MCNP ............................................................... 42 3.7 Method for Energy Deposition Calculation .......................................... 44 3.8 Applications of New Method ................................................................ 47 vii viii Page 4 UNCERTAINTY ASSESSMENT ........................................................................... 50 4.1 CFD Uncertainty Quantification Methodology................................ 51 4.1.1 Code Verification ................................................................. 52 4.1.2 Solution Verification ........................................................... 53 4.1.3 Input Sensitivity ................................................................... 56 4.1.4 Validation ........................................................................ 57 4.2 Method Down-select Model ............................................................ 58 4.2.1 Mesh Type ..................................................................... 66 4.2.2 Conformal versus Non-Conformal Mesh ...................... 68 4.2.3 Turbulence Model .......................................................... 69 4.3 Grid Convergence Assessment ........................................................ 75 4.3.1 Axial Coarsening ........................................................... 75 4.3.2 Grid Convergence Index ................................................ 78 4.4 Sensitivity Coefficient Calculation .................................................. 80 4.5 Validation Model ............................................................................. 85 4.5.1 Model Setup .................................................................. 85 4.5.2 Model Results ............................................................... 90 4.5.3 Estimate of Model-Form Error ..................................... 92 4.6 Neutronics Uncertainty Quantification ........................................... 93 4.7 Overall Uncertainty Assessment .................................................... 94 5 PARAMETRIC STUDY .......................................................................................... 96 5.1 Definitions ...................................................................................... 97 5.2 Review of Previous Parametric Studies ........................................ 100 5.3 Design Space and Assumptions .................................................... 102 5.3.1 Assumptions ............................................................... 102 5.3.2 Channel Configuration ............................................... 105 5.3.3 MCNP Model ............................................................. 107 5.3.4 Rocket Performance Estimates .................................. 109 5.4 Results .......................................................................................... 113 5.4.1 Peaking Factor and Flow Rate Zones ........................ 113 5.4.2 Peak Fuel Tempeatures .............................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    200 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us