Controlled Interlayer Between Titanium Carbon-Nitride and Aluminium Oxide

Controlled Interlayer Between Titanium Carbon-Nitride and Aluminium Oxide

UPTEC K11 006 Examensarbete 30 hp Januari 2011 Controlled interlayer between titanium carbon-nitride and aluminium oxide Sara Munktell von Fieandt Abstract Controlled interlayer between titanium carbon-nitride and aluminium oxide Sara Munktell von Fieandt Teknisk- naturvetenskaplig fakultet UTH-enheten In the industry of metal cutting tools the conditions are extreme; the temperature can vary thousand degrees rapidly and the pressure can be tremendously high. To survive Besöksadress: this kind of stress the cutting tool must be both hard and tough. In order to obtain Ångströmlaboratoriet Lägerhyddsvägen 1 these properties different coatings are used on a base of cemented carbide, WC-Co. Hus 4, Plan 0 Common coatings are hard ceramics like titanium nitride and titanium carbon-nitride with an outer layer of aluminium oxide. Postadress: In this thesis the possibility of using titanium dioxide as an interlayer between titanium Box 536 751 21 Uppsala carbon-nitride and aluminium oxide to control the morphology and phase of aluminium oxide is investigated. Of the different aluminium oxide phases only the Telefon: alpha-Al2O3 is stable. The titanium carbon-nitride coatings are made by CVD 018 – 471 30 03 (chemical vapour deposition); also the alumina is deposited by CVD. The titanium Telefax: dioxide was deposited by atomic layer deposition (ALD) which is a sequential CVD 018 – 471 30 00 technique that allows a lower deposition temperature and better control of the film growth than CVD. The obtained thin films were analyzed using XRD, Raman Hemsida: spectroscopy, ESCA and SEM. To test the adhesion of the coatings the samples were http://www.teknat.uu.se/student sand blasted. A thin interlayer of titanium dioxide causes the aluminium oxide to grow as alpha-Al2O3, thinner TiO2 gave better adhesion. Handledare: Tommy Larsson (Seco Tools AB) Mats Boman Ämnesgranskare: Mikael Ottoson Examinator: Gunnar Westin ISSN: 1650-8297, UPTEC 11 006 Sponsor: Seco Tools AB Abstract Controlled interlayer between titanium carbon-nitride and aluminium oxide. In the industry of metal cutting tools the conditions are extreme; the temperature can vary thousand degrees rapidly and the pressure can be tremendously high. To survive this kind of stress the cutting tool must be both hard and tough. In order to obtain these properties different coatings are used on a base of cemented carbide, WC-Co. Common coatings are hard ceramics like titanium nitride and titanium carbon-nitride with an outer layer of aluminium oxide. In this thesis the possibility of using titanium dioxide as an interlayer between titanium carbon- nitride and aluminium oxide to control the morphology and phase of aluminium oxide is investigated. Of the different aluminium oxide phases only the α -Al 2O3 is stable. The titanium carbon-nitride coatings are made by CVD (chemical vapour deposition), also the alumina is deposited by CVD. The titanium dioxide was deposited by atomic layer deposition (ALD) which is a sequential CVD technique that allows a lower deposition temperature and better control of the film growth than CVD. The obtained thin films were analyzed using XRD, Raman spectroscopy, ESCA and SEM. To test the adhesion of the coatings the samples were sand blasted. A thin interlayer of titanium dioxide causes the aluminium oxide to grow as α-Al 2O3, thinner TiO 2 gave better adhesion. 1 Table of Contents Sammanfattning ............................................................................................................................ 4 1 Aim .............................................................................................................................................. 5 2 Introduction ................................................................................................................................ 6 3 Background ................................................................................................................................ 6 3.1 Aluminium oxide Al 2O3 ........................................................................................................ 7 3.2 Titanium dioxide TiO 2 .......................................................................................................... 7 4 Experimental .............................................................................................................................. 8 4.1 Atomic Layer Deposition (ALD) .......................................................................................... 8 4.1.1 Basic characteristics ....................................................................................................... 8 4.2 Chemical vapour deposition (CVD) .................................................................................... 11 4.2.1 Basic characteristics ..................................................................................................... 11 4.3 Analytical techniques .......................................................................................................... 13 4.3.1 X-ray diffraction (XRD) ............................................................................................... 13 4.3.2 X-ray reflectivity (XRR) .............................................................................................. 13 4.3.3 X-ray fluorescence (XRF) ............................................................................................ 14 4.3.4 Raman spectroscopy ..................................................................................................... 14 4.3.5 Electron spectroscopy for chemical analysis (ESCA) .................................................. 14 4.3.6 Scanning electron microscopy (SEM) .......................................................................... 15 4.4 ALD of titanium dioxide ..................................................................................................... 16 4.5 CVD of aluminium oxide .................................................................................................... 16 4.6 Film characterisation ........................................................................................................... 17 4.6.1 Film thickness ............................................................................................................... 17 4.1.2 Film adhesion ............................................................................................................... 17 5 Results ....................................................................................................................................... 18 5.1 XRD characterisation .......................................................................................................... 18 5.2 Raman characterisation ....................................................................................................... 21 2 5.3 ESCA on Al 2O3 ................................................................................................................... 23 5.4 Evaluation of the film thickness .......................................................................................... 24 5.5 SEM ..................................................................................................................................... 25 5.6 XRF ..................................................................................................................................... 26 5.7 Film adhesion ...................................................................................................................... 26 6 Discussion.................................................................................................................................. 27 7 Conclusions ............................................................................................................................... 27 8 Acknowledgements .................................................................................................................. 28 9 References ................................................................................................................................. 29 3 Sammanfattning Ett skär för metallbearbetning får utstå extrema påfrestningar, så som stora temperaturförändringar under kort tid och mycket höga tryck. För att erhålla verktyg som kan tåla dessa förhållanden pågår intensiv forskning. Marknaden är under konstant utveckling där maskiner med högre skärhastigheter och nya material att bearbeta driver efterfrågan på bättre skärverktyg. Idag består de flesta skär för olika metaller av ett bulkmaterial av hårdmetall med olika typer av hårda keramiska beläggningar. I det här examensarbetet undersöks möjligheten att förbättra egenskaperna hos hårdmetallskär med en ytbeläggning bestående av ett innre lager av Ti(C,N) och ett yttre av Al 2O3. Beläggningarna görs med CVD (Chemical Vapour Deposition). Al 2O3 finns i flera olika struckturer, de två vanligaste är termodynamisktstabila α -Al 2O3 och metastabila κ- Al 2O3. Den önskvärda fasen är α - Al 2O3 men då man belägger Al 2O3 på Ti(C,N) så får man vanligen κ-Al 2O3. Syftet med projektet var att med ett mellanlager av titanoxid ska kunna styra fasinnehållet i Al 2O3. Titanoxiden belades med ALD (Atomic Layer Deposition) en beläggnings metod som kan ge mycket tunna och jämna filmer. Filmerna analyserades med XRD, Raman spectroskopi, ESCA, SEM och XRF. Ett tunt skikt av TiO 2 mellan Ti(C,N) och Al 2O3 resulterade i att α -Al 2O3 erhölls. 4 1 Aim The aim of this work was to test if the phase content of CVD aluminium

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    31 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us