Download File

Download File

Design of functional materials from molecular building blocks Anastasia Voevodin Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences Columbia University 2019 © 2019 Anastasia Voevodin All rights reserved ABSTRACT Design of functional materials from molecular building blocks Anastasia Voevodin This dissertation is a summary of my research developing the synthesis and assembly of functional materials from nanoscale building blocks and studying their emergent properties. Chapter 1 introduces superatoms as exciting atomically precise supramolecular building blocks for materials design. Bottom-up assembly of these superatoms into materials with increased dimensionality (0D, 1D, 2D, and 3D) offers exciting opportunities to create novel solid-state compounds with tailored functions for widespread technological applications. I review recent advances to assemble superatomic materials and focus on assemblies from metal chalcogenide clusters and fullerenes. In subsequent chapters, I employ several of these nanoscale superatoms as the precursors to functional materials. Chapter 2 describes the synthesis and structural characterization of a hybrid solid-state compound assembled from two building blocks: a nickel telluride superatom and an endohedral fullerene. Although a varied library of binary superatomic solids has been assembled from fullerenes, this is the first demonstration of a superatomic assembly using an endohedral fullerene as a building block. Lu3N@C80 fullerenes are dimerized in this new solid-state compound with an unpreceded orientation of the encapsulated metal nitride cluster. I explore the structural characterization of this material supported with computational evidence to explain the dimerization and orientation of the endohedral fullerenes. In Chapter 3 I begin to detail my exploration into assembling superatoms at micro and meso-scales –which will be the focus of Chapters 3-5. Polymers offer attractive mechanical and self-assembly properties that when combined with the attractive redox, optical, and magnetic properties of molecular clusters, these materials chart new paths to developing advanced materials and technologies. Chapter 3 describes charge transfer interactions between perylene diimide and cobalt telluride superatoms that drive the assembly of a solid-state compound from these two building blocks and inspired the design of a diblock copolymer template. Chapters 4 and 5 detail the synthesis and characterization of a polymer with functionalized cobalt selenide side units. I describe a cationic homopolymer in Chapter 4 and diblock copolymer in Chapter 5 synthesized from ring opening polymerization of norbornene-derived monomers. Chapter 4 describes potential applications of the homopolymer system such as thin film fabrication. Chapter 5 discusses the self-assembly of the redox-active diblock copolymer into cross-linkable vesicle structures that can encapsulate molecular cargo. Finally, in Chapter 6 I introduce a new molecular building block to form gold metal surface bonds. Bisaminocyclopropenylidenes (BACs) are a class of carbenes that, much like N- heterocyclic carbenes, have been widely employed for catalysis but have yet to be explored for materials design. This chapter describes the structure and binding orientation of a BAC on an Au(111) surface. Each of these chapters illustrates how the synthetic flexibility of molecular building blocks enables the design of functional materials with tunable properties. TABLE OF CONTENTS List of Figures and Tables ........................................................................................................... vi Chapter 1: Introduction to superatomic solids in materials science .........................................1 1.0 Preface. ................................................................................................................................... 1 1.0.1 Overview ............................................................................................................................. 1 1.1. Strategies for the synthesis of superatoms ............................................................................ 4 1.2. Isolated properties of superatoms overview ......................................................................... 7 1.3. Introduction to monocomponent superatomic assemblies. ................................................. 10 1.4. Multicomponent superatomic crystals ................................................................................ 18 1.5. Superatomic crystals assembled from fullerenes other than C60 ........................................ 24 1.6. Reduction of 3D materials to lower dimensions ................................................................. 30 1.7. Future Directions ................................................................................................................ 32 1.8 References ............................................................................................................................ 33 Chapter 2: Dimerization of endohedral fullerene in a superatomic crystal .......................... 40 2.0 Preface.................................................................................................................................. 40 2.1 Introduction .......................................................................................................................... 40 2.3 Structural details of the Lu3N@C80 ..................................................................................... 44 2.4 Explaining the orientation of Lu3N clusters within [Lu3N@C80]2 ....................................... 47 2.5 Conclusion ........................................................................................................................... 53 i 2.6 Synthetic Details .................................................................................................................. 54 2.7 Computational Details ......................................................................................................... 54 2.8 Single crystal x-ray diffraction of [Ni12Te12(PEt3)8]2[(Lu3N@C80)2] .................................. 55 2.9 References ............................................................................................................................ 59 Chapter 3: Towards long range ordering of superatomic solids .............................................62 3.0 Preface.................................................................................................................................. 62 3.1 Introduction .......................................................................................................................... 62 3.2 In-situ reduction of PDI with Co6Te8(PEt3)6 ....................................................................... 66 3.3 Synthesis of the superatomic crystal [Co6Te8(PEt3)6][C5-PDI-CN2] ................................... 69 3.4 Design of a polymer template to direct the self-assembly of superatoms ........................... 70 3.5 Synthesis and assembly of perylene diimide block copolymer ........................................... 72 3.6 Conclusion ........................................................................................................................... 74 3.7 Methods................................................................................................................................ 75 3.8 Synthetic Details .................................................................................................................. 76 3.9 Select NMR Spectra ............................................................................................................. 79 3.10 Single crystal X-ray diffraction ......................................................................................... 80 3.11 References .......................................................................................................................... 83 Chapter 4: Designing a superatom-containing polymer ..........................................................88 4.0 Preface.................................................................................................................................. 88 ii 4.1 Introduction- Designing a superatom-containing polymer .................................................. 88 4.2 Synthetic routes for cluster-contanining homopolymer ....................................................... 89 4.3 Synthesis of ROMP polymerizable superatom-containing monomer……………………………..92 4.4 Homopolymer Layer-by-Layer ............................................................................................ 96 4.5 Conclusion……………………………………………………………………………...……………………………100 4.5 Methods……………………………………………………………………………………………………………….101 4.6 Synthetic Details ................................................................................................................ 102 4.7. NMR Spectra .................................................................................................................... 104 4.8 Crystallographic Details..................................................................................................... 107 4.9 References .......................................................................................................................... 110 Chapter 5: Multifunctional vesicles from a self-assembled superatom-containing diblock copolymer....................................................................................................................................112

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    185 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us