MOSFET – N-Type, P-Type

MOSFET – N-Type, P-Type

Lecture Outline ESE 570: Digital Integrated Circuits and VLSI Fundamentals ! Semiconductor Physics " Band gaps " Field Effects Lec 4: January 26, 2016 ! MOS Physics MOS Transistor Theory, MOS Model " Cut-off " Depletion " Inversion " Threshold Voltage Penn ESE 570 Spring 2016 – Khanna Penn ESE 570 Spring 2016 - Khanna 2 Review: MOSFET – N-Type, P-Type ! N – negative carriers ! P – positive carriers Semiconductor Physics " electrons " holes ! Switch turned on ! Switch turned on positive VGS negative VGS Vth,n > 0 Vth,p < 0 VGS > Vth,n VGS < Vth,p to conduct to conduct Penn ESE 570 Spring 2016 - Khanna 3 Penn ESE 570 Spring 2016 - Khanna 4 Silicon Lattice Energy State View ! Cartoon two-dimensional view Energy Valance Band – all states filled Penn ESE 570 Spring 2016 - Khanna 5 Penn ESE 570 Spring 2016 - Khanna 6 1 Energy State View Energy State View Conduction Band– all states empty Conduction Band– all states empty Band Gap Energy Energy Valance Band – all states filled Valance Band – all states filled Penn ESE 570 Spring 2016 - Khanna 7 Penn ESE 570 Spring 2016 - Khanna 8 Band Gap and Conduction Doping ! Add impurities to Silicon Lattice " Replace a Si atom at a lattice site with another Insulator Metal ! E.g. add a Group 15 element Ec Ec Ev " E.g. P (Phosphorus) 8ev OR E v Ev Ec Semiconductor Ec 1.1ev Ev Penn ESE 570 Spring 2016 - Khanna 9 Penn ESE 570 Spring 2016 - Khanna 10 Doping with P Doped Band Gaps ! End up with extra electrons ! Addition of donor electrons makes more metallic " Donor electrons " Easier to conduct ! Not tightly bound to atom " Low energy to displace " Easy for these electrons Semiconductor to move E 0.045ev c 1.1ev ED Ev Penn ESE 570 Spring 2016 - Khanna 11 Penn ESE 570 Spring 2016 - Khanna 12 2 Capacitor Charge MOS Field? ! Remember capacitor charge ! What does “capacitor” field do to the Donor-doped semiconductor channel? Vgs=0 + + + + + + + + gate No field - - - - drain source - - - - - - - - - - - semiconductor Penn ESE 570 Spring 2016 - Khanna 13 Penn ESE 570 Spring 2016 - Khanna 14 MOS Field? MOS Field? ! What does “capacitor” field do to the Donor-doped ! What does “capacitor” field do to the Donor-doped semiconductor channel? semiconductor channel? Vgs=0 + + + Vgs=0 + + + No field + V >0 No field + V >0 - - - - - cap - - - - - cap - - - - - - - - + + + + + Vgs>0 Conducts = - - - - - - Penn ESE 570 Spring 2016 - Khanna 15 Penn ESE 570 Spring 2016 - Khanna 16 MOS Field Effect Doping with B ! Charge on capacitor ! End up with electron vacancies -- Holes " Attract or repel charges to form channel " Acceptor electron sites " Modulates conduction ! Easy for electrons to shift into these sites " Positive " Low energy to displace " Attracts carriers " Easy for the electrons to move " Enables conduction + + + + + " Movement of an electron best viewed as movement of hole " Negative? " Repel carriers - - - - - - " Disable conduction - - - - - - Penn ESE 570 Spring 2016 - Khanna 17 Penn ESE 570 Spring 2016 - Khanna 18 3 Doped Band Gaps Field Effect? ! Addition of acceptor sites makes more metallic ! Effect of positive field on Acceptor-doped Silicon? " Easier to conduct Vgs=0 No field Semiconductor + + + + Ec 1.1ev 0.045ev EA Ev Penn ESE 570 Spring 2016 - Khanna 19 Penn ESE 570 Spring 2016 - Khanna 20 Field Effect? Field Effect? ! Effect of positive field on Acceptor-doped Silicon? ! Effect of positive field on Acceptor-doped Silicon? Vgs=0 Vgs=0 No field + + + + No field + + + + Vcap>0 Vcap>0 + + + + - - - + + + + - - - + + + + + Vgs>0 = No conduction Penn ESE 570 Spring 2016 - Khanna 21 Penn ESE 570 Spring 2016 - Khanna 22 Field Effect? Field Effect? ! Effect of negative field on Acceptor-doped Silicon? ! Effect of negative field on Acceptor-doped Silicon? Vgs=0 - - - Vgs=0 - - - No field + No field + Vcap<0 Vcap<0 + + + + + + + + + + + + + + - - - Vgs>0 = Conduction + + + + + Penn ESE 570 Spring 2016 - Khanna 23 Penn ESE 570 Spring 2016 - Khanna 24 4 MOSFETs MOSFET ! Donor doping ! Semiconductor can act like metal or insulator " Excess electrons ! Use field to modulate conduction state of " Negative or N-type material semiconductor " NFET ! Acceptor doping " Excess holes " Positive or P-type material - - - - - - " PFET + + + + + Penn ESE 570 Spring 2016 - Khanna 25 Penn ESE 570 Spring 2016 - Khanna 26 Two-Terminal MOS Structure 2 MOS Physics - nMOS GATE Si – Oxide interface n+ n+ (Mass Action Law) Penn ESE 570 Spring 2016 - Khanna Penn ESE 570 Spring 2016 - Khanna 28 P-type Doped Semiconductor Band Gap P-type Doped Semiconductor Band Gap Free space Free space Electron affinity of silicon Electron affinity of silicon Conduction band Conduction band E − E E = C V i 2 Intrinsic Fermi level Intrinsic Fermi level Fermi level Fermi level qΦS qΦS Valence band Valence band ! qΦ and E are in units of energy = electron-volts (eV); where 1 eV = 1.6 x E − E kT n -19 Fermi potential: F i i 10 J. ΦF = → ΦFp = ln q q N A ! 1 eV corresponds to energy acquired by a free electron that is accelerated by an electric potential of one volt. Work function (Fermi-to-space): qΦS = qχ + (EC − EF ) ! Φ and V corresponds to potential difference in volts. Penn ESE 570 Spring 2016 - Khanna 29 Penn ESE 570 Spring 2016 - Khanna 30 5 MOS Capacitor Energy Bands MOS Capacitor with External Bias ! Three Regions of Operation: " Accumulation Region – VG < 0 " Depletion Region – VG > 0, small " Inversion Region – VG ≥ VT, large Penn ESE 570 Spring 2016 - Khanna 31 Penn ESE 570 Spring 2016 - Khanna 32 Accumulation Region Accumulation Region – Energy Bands Accumulation Si surface VG < 0 Band bending due to VG < 0 EFm qΦ qV E E S G= Fp− Fm qΦ(x) qΦFp EFp x 0 Penn ESE 570 Spring 2016 - Khanna 33 Penn ESE 570 Spring 2016 - Khanna 34 Depletion Region Depletion Region – Energy Bands Depletion Si surface VG > 0 (small) Band bending due to VG > 0 tox - - - - - mobile holes qΦ(x) qΦFp qV G= E Fp− E Fm EFp qΦS EFm xd x 0 Penn ESE 570 Spring 2016 - Khanna 35 Penn ESE 570 Spring 2016 - Khanna 36 6 Depletion Region Depletion Region kT ni kT ni ΦFp = ΦF = ln < 0 ΦFp = ΦF = ln < 0 q N A q N A tox 26 mV at room T tox 26 mV at room T ΦS Surface potential ΦS Surface potential - - - Φ - - - Φ - ΦFp Bulk potential - ΦFp Bulk potential dQ = −qN Adx Mobile hole charge density (per unit area) in thin layer below surface dQ dφ = −x Potential required to displace dQ by distance x εSi q ⋅ N ⋅ x dφ = A dx εSi Penn ESE 570 Spring 2016 - Khanna 37 Penn ESE 570 Spring 2016 - Khanna 38 Depletion Region Depletion Region kT ni kT ni ΦFp = ΦF = ln < 0 ΦFp = ΦF = ln < 0 q N A q N A tox 26 mV at room T tox 26 mV at room T ΦS Surface potential ΦS Surface potential - - - Φ - - - Φ - ΦFp Bulk potential - ΦFp Bulk potential q ⋅ N A ⋅ x dφ = dx 2εSi ΦFp − ΦS εSi xd = q ⋅ N A ΦFp xd 2 q ⋅ N A ⋅ x q ⋅ N A ⋅ xd dφ = dx = = Φ − Φ Q = −qN A xd ∫ ∫ 2 Fp S ΦS 0 εSi εSi 2εSi ΦFp − ΦS Q = −qN A = − 2qN AεSi ΦFp − ΦS 2εSi ΦFp − ΦS q ⋅ N A ⇒ xd = q ⋅ N A Penn ESE 570 Spring 2016 - Khanna 39 Penn ESE 570 Spring 2016 - Khanna 40 Inversion Region Inversion Region – Energy Bands Inversion Si surface VG ≥ VT (threshold voltage) VG ≥ VT0 > 0 tox qΦFp - -- - - - -- E qΦS Fp qV G= E Fp− E Fm EFm xdm x (Density of mobile electrons = 0 density of holes in bulk) Penn ESE 570 Spring 2016 - Khanna 41 Penn ESE 570 Spring 2016 - Khanna 42 7 Depletion Region – Energy Bands Inversion Region Depletion Si surface VG ≥ VT (threshold voltage) VG > 0 (small) Band bending due to VG > 0 tox qΦ(x) - -- - - - -- qΦFp qV G= E Fp− E Fm EFp qΦS EFm xd (Density of mobile electrons = x density of holes in bulk) 0 Q = − 2qN AεSi ΦFp − ΦS = − 2qN AεSi 2ΦFp Penn ESE 570 Spring 2016 - Khanna 43 Penn ESE 570 Spring 2016 - Khanna 44 2-terminal MOS Cap # 3-terminal nMOS nMOS = MOS cap + source/drain VG VD VSB = 0 VS - - - - - - - - - - - V G VD VS - - - - - - - 2εSi 2ΦFp −VSB - - - depletion region- - - xd = q ⋅ N A Penn ESE 570 Spring 2016 - Khanna 45 Penn ESE 570 Spring 2016 - Khanna 46 Threshold Voltage Threshold Voltage Q V [VT0 -> VT0 in SPICE] B0 T0n,p for VSB = 0 VT = VT 0 = VFB − 2ΦF − Cox Qox QB0 - VT 0 = ΦGC − − 2ΦF − - for nMOS and pMOS C C + ox ox for V != 0 + SB Q V = V − 2Φ − B VFB = flat band voltage T FB F Qox Cox V FB= 觻GC− ≈ 觻GC C ox Q Q −Q V = V − 2Φ − B0 − B B0 QB0 = − 2qN AεSi 2ΦF T FB F Cox Cox ) Q −Q V = V − B B0 with V = 0. T T 0 SB γ Cox VFB V FB Q −Q 2qN ε − B B0 = A Si 2Φ −V − 2Φ work function between gate and channel C C ( F SB F ) l ox ox V = V +γ 2Φ −V − 2Φ T T 0 ( F SB F ) Penn ESE 570 Spring 2016 - Khanna 47 Penn ESE 570 Spring 2016 - Khanna 48 8 Threshold Voltage Threshold Voltage VSB is ≥ 0 in nMOS, ≤ 0 in pMOS |VSB| $ VT0 is positiveϨ言Ϩ in nMOS (VT0n) , negative in pMOS (VT0p) Penn ESE 570 Spring 2016 - Khanna 49 Penn ESE 570 Spring 2016 - Khanna 50 Big Idea Admin ! 3 operation regions ! HW 2 due Thursday, 1/28 " Cut-off ! Office hours updated on Course website " Depletion " Inversion ! No Journal Thursday this week ! Doping and VSB change VT Penn ESE 570 Spring 2016 - Khanna 51 Penn ESE 570 Spring 2016 - Khanna 52 9 .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    9 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us