Introduction – Ehrenfest Time in Scattering Problems Robert S Whitney

Introduction – Ehrenfest Time in Scattering Problems Robert S Whitney

Institut Laue Langevin, Grenoble, France. Banff, February 2008 Introduction – Ehrenfest time in scattering problems Robert S Whitney CLOSED RMT 1 10 system size, L wavelength,λ RMT ‘CLASSICAL’ OPEN τ << ττ >> τ E DDE Collaborations & Discussions: P. Jacquod, C. Petitjean, P. Brouwer, E. Sukhorukov When is quantum = classical ? QUANTUMEhrenfest theorem CLASSICAL Liouville theorem d ρˆ = −i¯h[Hˆ, ρˆ] d f(r, p)=−{H,f(r, p)} dt dt phase−space commutator Moyal bracket Poisson bracket Wigner function minimally dispersed W wavepacket 1/2 1/2 L deBoglie L,W L λ hyperbolic stretch non−hyperbolic stretch Quantum = Classical & fold Quantum = Classical Ehrenfest time (log time) Ehrenfest Time, τE: time during which 1/2 1/2 L,W = L λ deBoglie quantum classical τ =2Λ−1 ln[L/λ ] hyperbolic stretch non−hyperbolic stretch E deBroglie & fold Quantum = Classical 2 Quantum = Classical with L=L, (W /L) WAVEPACKET growth ∝ exp[−Λt] CLOSED SYSTEM – classical limit TIMESCALES: Form factor GUE − classical limit −1 ♣ (Level-spacing) ∝ (L/λdeBroglie) GOE ♣ ∝ L/λ OPEN SYSTEM Ehrenfest time ln[ deBroglie] Ehrenfest time "All" particles escape ♣ Classical scales: beforeh/∆ t dwell time = λdeBroglie-independent ‘CLASSICAL’ Brouwer−Rahav−Tian A short and inaccurate history of the Ehrenfest time! LAST CENTURY Ehrenfest: Ehrenfest theorem. = Liouville theorem Z. Physik 45 455 (1927) ??? Larkin-Ovchinnikov: superconducting fluct. in metals Sov. Phys. JETP 28 1200 (1969) Berman-Zaslavsky: stochasticity Physica A 91, 450 (1978), Phys. Rep. 80, 157 (1981) Aleiner-Larkin weak-loc. in transport & level-statistics PRB 54, 14423 (1996); 55, R1243 (1997). THIS CENTURY Semiclassics ... see other talks this week. ♣ Cut-off on loops Sieber, M¨uller-Braun-Heusler-Haake ♣ Off-diagonal (Noise, weak-loc., UCFs, etc) suppressed (or not) Rahav-Brouwer & Jacquod-Whitney Weak localization and back−scattering Conductance fluctuations W L W W 1/2 1/2 L λdeBroglie W W Fano factor of shot noise not diag. approx W W W W Open systems – scattering matrix cf. scattering from atom or node in quantum graph rt S = Scattering matrix, t r t†t → Landauer-B¨uttiker: eigenvalues of all transport properties ♣ ∝ T Electrical conductance n n ♣ quantum noise ∝ n Tn(1 − Tn) & higher moments Quantum noise : measures determinism Bands in classical phase-space Silvestrov-Goorden-Beenakker (2003) Tworzydlo-Tajic-Schomerus-Beenakker (2003) Whitney-Jacquod (2005) Open systems: Paths in families (bands) cf. integrable systems exp[−Λ t ] t ~ number bounces Wirtz−Tang−Burgdorfer PRB (1999) Paths associated with 4 band corners dynamics relative to black path Phase-space basis : orthogonal basis of wavepackets exp[−Λ t ] Cover: bands with area > 2π¯h ⇒ t<τ 1/2 paths with E ~λdeBroglie unchanged under Basis states Fourier transform ♠ 00··· 00 0 ♠ 0 ··· 00 . ⇐= 00.. CLASSICAL block: diagonal t = . . | eigenvalues | = 0,1 . ♠ 00 00··· 0 ♦♦ ⇐= QUANTUM block: not diagonal 00··· 0 ♦♦ semiclassics shows non-RMT. † Eigenvalues of t t =0, 1 ⇒ Tn(1−Tn)=0 ⇒ Noise-less Modes Conclusion Open systems: Ehrenfest time controls cross-over to NEW universal regime (non-RMT)asλdeBroglie → 0. Open questions [A] Ehrenfest time relevant for closed systems? • need classical timescale; i.e. inter-billiard transfer time [B] Re-summing loop expansion for finite Ehrenfest time? −1 [C] Negative Ehrenfest time τE =Λ ln[L/λdeBroglie] ?? ... for noise L = W 2/L → 0 for W L. [D] Ehrenfest time in graphs? or • require correlated actions? Typical Ehrenfest times Zurek (2003) QUANTUM CLASSICAL e He L∼λ deBroglie Quantum dot Double pendulum −1 τE = Λ ln[1] ∼ 0 Marcus Group, Harvard (2003) www.chaoticpendulums.com 3 L∼10 λdeBroglie −1 3 τE = Λ ln[10 ] ∼ 7τ0 34 L∼10 λdeBroglie −1 34 τE = Λ ln[10 ] ∼ 80τ0 Schrodinger cat state after 2 minutes !! Decoherence??.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    9 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us