Underwater Animal Monitoring Magnetic Sensor System Thesis by Altynay Kaidarova In Partial Fulfillment of the Requirements For the Degree of Master of Science King Abdullah University of Science and Technology Thuwal, Kingdom of Saudi Arabia October, 2017 1 EXAMINATION COMMITTEE PAGE The thesis of Altynay Kaidarova is approved by the examination committee. Committee Chairperson: Jürgen Kosel Committee Members: Boon S. Ooi, Micheal L. Berumen 2 COPYRIGHT PAGE © September 2017, Altynay Kaidarova All Rights Reserved 3 ABSTRACT Underwater animal monitoring magnetic sensor system Altynay Kaidarova Obtaining new insights into the behavior of free-living marine organisms is fundamental for conservation efforts and anticipating the impact of climate change on marine ecosystems. Despite the recent advances in biotelemetry, collecting physiological and behavioral parameters of underwater free-living animals remains technically challenging. In this thesis, we develop the first magnetic underwater animal monitoring system that utilizes Tunnel magnetoresistance (TMR) sensors, the most sensitive solid-state sensors today, coupled with flexible magnetic composites. The TMR sensors are composed of CoFeB free layers and MgO tunnel barriers, patterned using standard optical lithography and ion milling procedures. The short and long-term stability of the TMR sensors has been studied using statistical and Allan deviation analysis. Instrumentation noise has been reduced using optimized electrical interconnection schemes. We also develop flexible NdFeB-PDMS composite magnets optimized for applications in corrosive marine environments, and which can be attached to marine animals. The magnetic and mechanical properties are studied for different NdFeB powder concentrations and the performance of the magnetic composites for different exposure times to sea water is systematically investigated. Without protective layer, the composite magnets loose more than 50% of their magnetization after 51 days in seawater. The durability of the composite magnets can be considerably improved by using polymer coatings which are protecting the composite magnet, whereby Parylene C is found to be the most effective solution, providing simultaneously corrosion resistance, flexibility, and 4 enhanced biocompatibility. A Parylene C film of 2µm thickness provides the sufficient protection of the magnetic composite in corrosive aqueous environments for more than 70 days. For the high level performance of the system, the theoretically optimal position of the composite magnets with respect to the sensing direction of the sensor has been estimated using finite element modeling software. The magnetic sensing system has been practically implemented for monitoring the belly size of a model fish and for monitoring the behavior of the largest living bivalve, giant clam (Tridacna maxima) in an aquarium. In both of these experiments, the sensing system showed a high performance, indicating its potential for novel marine monitoring applications. 5 ACKNOWLEDGEMENTS I would like to extend my gratitude to Prof Jürgen Kosel for guidance, encouragement and support throughout the course of this research. I also take this opportunity to express a deep sense of gratitude to each member of Sensing, Magnetism and Microsystems group (SMM). A special note of appreciation goes to Ulrich Buttner and Nathan Geraldi for their expert advice and valuable help. I am very thankful for my mother, Aigul Kaidarova, the best mother in the world, and my friend, Wenzhe Guo for continuous support and motivation. 6 TABLE OF CONTENTS EXAMINATION COMMITTEE PAGE .............................................................................. 1 COPYRIGHT PAGE ....................................................................................................... 2 ABSTRACT .................................................................................................................. 3 ACKNOWLEDGEMENTS ............................................................................................... 5 TABLE OF CONTENTS .................................................................................................. 6 LIST OF ABBREVIATIONS ............................................................................................. 8 LIST OF ILLUSTARTIONS .............................................................................................. 9 LIST OF TABLES ......................................................................................................... 12 1. Introduction ......................................................................................................... 13 1.1 Motivation ............................................................................................................................ 13 1.2 Objectives and Contributions .............................................................................................. 15 1.3 Outline of this thesis ............................................................................................................ 17 2. Biologging technology ........................................................................................... 18 2.1 Underwater electronic tags. ................................................................................................ 18 2.1.1 Radio and acoustic transmitters with sensors…………………………..………………………………18 2.1.2 Archival tags or Data storage tags…………………………………………….………………………………20 2.1.3 Pop-up Satellite Archival Tags………………………………………………….……………………………….20 2.1.4 Satellite-linked dive recorders………………………………………………..…………………………………21 2.2 Potential underwater applications ...................................................................................... 23 3. TMR sensor .......................................................................................................... 26 3.1 Principle of TMR effect ........................................................................................................ 26 3.2 Fabrication of Tunnel Junction ............................................................................................. 29 3.3 Characterization and signal stability .................................................................................... 32 3.4 Noise and drift detection ..................................................................................................... 40 4. Flexible composite magnets .................................................................................. 45 4.1 Magnetic materials .............................................................................................................. 45 4.2 Polymer materials ................................................................................................................ 49 4.3 PDMS/NdFeB composites .................................................................................................... 50 7 4.4 Fabrication of composite magnets ...................................................................................... 50 4.5 Magnetic characterization ................................................................................................... 54 4.6 Magnetic properties of composite magnets in sea water ................................................... 58 4.7 Polymer based coatings for corrosion protection ............................................................... 60 5. Optimal position estimation ................................................................................. 63 5.1 Modeling and Simulation ..................................................................................................... 63 5.2 Results .................................................................................................................................. 68 6. Realization of magnetic monitoring system ........................................................... 76 6.1 Model setup ......................................................................................................................... 76 6.2 Giant clam monitoring ......................................................................................................... 80 6.3 Giant clam behavior ............................................................................................................. 86 7.Conclusion and outlook ......................................................................................... 89 BIBLIOGRAPHY ......................................................................................................... 92 APPENDICES ........................................................................................................... 106 8 LIST OF ABBREVIATIONS CSD Calculated Structured Design DST Data Storage Tag GMR Giant magnetorestance effect GUI Graphical user interface MR Magnetoresistance MTJ Magnetic Tunnel Junction PMMA Poly(methyl methacrylate) PSAT Pop-up Satellite Archival Tag PIT Passive integrated transponder Tags RA Resistance area RT Room Temperature RTM Radio Transmitters SD Standard Deviation SDT Spin-dependent tunneling SE Standard Error SLDR Satellite-linked dive recorders TMR Tunnel magnetoresistance VSM Vibrating Sample Magnetometer WWF World Wildlife Fund 9 LIST OF ILLUSTARTIONS Figure 1.1 Schematic of magnetic sensor system. The varying distance between TMR sensor and flexible composite magnet allows non-invasive underwater animal monitoring ................................................... 16 Figure 2.1 Common types of electronic tags .............................................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages111 Page
-
File Size-