First record of Poecilochirus mrciaki Mašán, 1999 (Acari, Parasitidae) and its phoretic carriers in the Iberian peninsula Marta I. Saloña Bordas, M. Alejandra Perotti To cite this version: Marta I. Saloña Bordas, M. Alejandra Perotti. First record of Poecilochirus mrciaki Mašán, 1999 (Acari, Parasitidae) and its phoretic carriers in the Iberian peninsula. Acarologia, Acarologia, 2019, 59 (2), pp.242-252. 10.24349/acarologia/20194328. hal-02177500 HAL Id: hal-02177500 https://hal.archives-ouvertes.fr/hal-02177500 Submitted on 9 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Acarologia A quarterly journal of acarology, since 1959 Publishing on all aspects of the Acari All information: http://www1.montpellier.inra.fr/CBGP/acarologia/ [email protected] Acarologia is proudly non-profit, with no page charges and free open access Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari. Subscriptions: Year 2019 (Volume 59): 450 € http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php Previous volumes (2010-2017): 250 € / year (4 issues) Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01) Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited. First record of Poecilochirus mrciaki Mašán, 1999 (Acari, Parasitidae) and its phoretic carriers in the Iberian peninsula Marta I. Saloña Bordasa , M. Alejandra Perottib a Dpto de Zoología y Biología Celular Animal, Facultad de Ciencia y Tecnología, UPV/EHU, Barrio de Sarriena s/n, 48940 Bilbao, Spain. b Ecology and Evolutionary Biology Section, School of Biological Sciences, University of Reading, Whiteknights Campus, Reading RG6 6AS, United Kingdom. Original research ABSTRACT We report for the first time the presence of Poecilochirus mrciaki Mašán, 1999 in the South of Europe, in the Iberian peninsula and on new carrier insects. Mites were collected from carrion insects, during a decomposition experiment carried out in the natural park “Aiako Harria” (Errenteria, Gipuzkoa). Most deutonymphs were found on the body of the necrophagous beetle Necrodes littoralis (Coleoptera, Silphidae). Other species of insects in families Geotrupidae, Staphylinidae (Coleoptera) and Calliphoridae (Diptera) were also transporting mites. All carriers were colonising or visiting the pig carcasses. Sampling lasted 3 months in the summers 2009 and 2010. Most mites were sampled from bloat to advanced decay. This is also the first record of P. mrciaki phoretic on flies (Diptera). Keywords forensic acarology; phoresy; Poecilochirus mrciaki; new record; Spain Zoobank http://zoobank.org/36F2E895-9345-409F-B655-17FDB5F8C741 Introduction Poecilochirus mrciaki Mašán, 1999 is a necrophilous Parasitidae (Mesostigmata). Its phoretic deutonymphs are easily recognised due to the stout club-shaped setae on the gnathosoma and coxae II and III, and the dark band surrounding completely the sternal shield. Deutonymphs of the species of the genus Poecilochirus are phoretic on burying and carrion beetles (Silphidae). P. mrciaki was first found and described from South-West Slovakia (in 1999), and first collected on the silphid species Necrodes littoralis (L., 1758), Nicrophorus humator (Gleditsch, 1767) and Oiceoptoma thoracica (L., 1758) (Mašán 1999). More recently, it has been found in Received 13 December 2018 Poland transported by O. thoracica (misnamed as Silpha thoracica) (Haitlinger 2008). Carrion Accepted 26 June 2019 beetles may arrive to a carcass or corpse during the first days of decomposition (Díaz-Martín Published 09 July 2019 and Saloña-Bordas 2015; Grassberger and Frank 2004) especially with high temperatures Corresponding author (Matuszewski 2011). In the original description of P. mrciaki (Mašán 1999) no details on Marta I. Saloña Bordas: [email protected] habitat, e.g. carcass type, are given. Burying beetles are attracted to animal remains, as they need animal tissues to feed their Academic editor offspring (Milne and Milne, 1976). They excavate hollows underneath or nearby carrion to Tixier, Marie-Stéphane build a nest or crypt, to breed (Pukowski 1933), while parasitid mites keep the nest clean from competitors, usually fly maggots (Perotti and Braig 2009; Schwarz and Müller 1992). DOI As a dead body decomposes, fluids and volatile substances will attract a specific sarcos- 10.24349/acarologia/20194328 aprohagous community with different species arriving at different stages of decomposition. Copyright Scavenger colonisation follows a model of succession. Jean Pierre Mégnin (1828-1905) de- Saloña Bordas M. I. and Perotti M. A. scribed for the first time this model and proposed up to eight different waves of colonisation Distributed under Creative Commons CC-BY 4.0 How to cite this article Saloña Bordas M. I. and Perotti M. A. (2019), First record of Poecilochirus mrciaki Mašán, 1999 (Acari, Parasitidae) and its phoretic carriers in the Iberian peninsula. Acarologia 59(2): 242-252; DOI 10.24349/acarologia/20194328 by arthropods (Mégnin 1894). At present, the succession model proposed by Mégnin has been reorganised into 5 stages of decomposition such as fresh, bloated, active decay, advanced decay, and skeleton or dried remains (Payne 1965; Anderson and VanLaerhoven 1996; Goff 2009). Poecilochirus species are phoretic (Hyatt 1980; Milne and Milne 1976; Neuman 1943; Perotti and Braig 2009; Saloña-Bordas and Perotti, 2014; Schwarz and Müller 1992). Phoresy is the interaction between a host or carrier where a phoront uses an organism to be transported to a new environment and to a new food source. Some mite species arrive in carrion on the first necrophagous insects, becoming early colonisers of carcasses (Leclercq and Verstraeten 1993; Perotti and Braig 2009; Perotti et al. 2010). Mites might synchronise their life cycle with the phoront (Houck and O’Connor 1991; Neuman 1943; Schwarz and Müller 1992), especially those having high specificity with the carrier (Camerik 2010; Perotti and Braig 2009). In the case of carrion associated parasitid mites, the presence of the mite is critical for the reproductive success of the beetle carrier, by preventing the survival of competitors, as for example blowflies (Springett 1968). Parasitidae might be used as indicators of post mortem interval (Perotti et al, 2010; González Medina et al. 2012; Saloña-Bordas and Perotti, 2014). Poecilochirus deutonymphs are obligate phoronts on necrophagous beetles (Baker and Schwarz 1997, García-Guerrero et al. 2014, Perotti and Braig 2009; Schwarz and Müller 1992, Schwarz and Walzl, 1996; Springett 1968). A recent review on phoretic mites underlines the presence of Parasitidae mites on carcasses at different stages of decomposition, mainly associated to black putrefaction, butyric fermentation or advance decay (Braig and Perotti 2009; Perotti et al. 2010). High phoretic specificity has been reported between Poecilochirus mites and Nicrophorus beetles (Silphidae) (Milne and Milne 1976, Neuman 1943; Perotti et al. 2010; Schwarz and Müller 1992; Schwarz and Walzl 1996; Springett 1968). However, P. carabi has been collected at an early stage of decomposition (fresh) of a mice carcass, reported as P. necrophori by Wilson (1983), and from the soil underneath a hung corpse at active decay by Saloña-Bordas and Figure 1 Aiako Harria Natural Park. Distribution of carcasses (C1-C5) placed in the research area. Saloña Bordas M. I. and Perotti M. A. (2019), Acarologia 59(2): 242-252; DOI 10.24349/acarologia/20194328 243 Perotti (2014). P. austroasiaticus has been also reported on corpses at advanced stage of decomposition (González Medina et al. 2012). The correct identification of the mite species is crucial for an accurate interpretation of circumstances surrounding death, like the estimation of the post-mortem interval. The present work confirms the presence of P. mrciaki associated with carcasses, its arrival from the beginning of the decomposition process, fresh stage, as well as its phoresy on blowflies and carrion beetles. Material and methods Ten piglet carcasses (Sus scrofa Linnaeus, 1758) were placed in Aiako Harria natural Park (UTM: 30TWN91458860), North Spain. The park environment is a mixed deciduous forest with pine trees. Five carcasses were placed on 6 Aug. 2009, and 5 new replicates were placed one year later (30 Jul. 2010) under similar environmental conditions (Figure 1). Carcasses were daily observed during the first weeks, taking notes on morphological Figure 2 Poecilochirus mrciaki deutonymph. A, ventral view (scale bar,
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages13 Page
-
File Size-