Collective Dynamics of a Generalized Dicke Model

Collective Dynamics of a Generalized Dicke Model

Collective Dynamics of a Generalized Dicke Model J. Keeling, J. A. Mayoh, M. J. Bhaseen, B. D. Simons Harvard, January 2012 Funding: Jonathan Keeling Collective dynamics Harvard, January 2012 1 / 25 New relevance Superconducting qubits Quantum dots Nitrogen-vacancies in diamond Cavity κ κ Ultra-cold atoms Pump Pump Rydberg atoms Coupling many atoms to light Old question: What happens to radiation when many atoms interact “collectively” with light. Superradiance — dynamical and steady state. Jonathan Keeling Collective dynamics Harvard, January 2012 2 / 25 Cavity κ κ Pump Pump Coupling many atoms to light Old question: What happens to radiation when many atoms interact “collectively” with light. Superradiance — dynamical and steady state. New relevance Superconducting qubits Quantum dots Nitrogen-vacancies in diamond Ultra-cold atoms Rydberg atoms Jonathan Keeling Collective dynamics Harvard, January 2012 2 / 25 If jr − r j λ, use P S ! S dρ Γ i j i i = − S+S−ρ − S−ρS+ + ρS+S− Collective decay: dt 2 N/2 2 ΓN /2 z = j j = = /dt If S S N 2 initially: 〉 z 〉 S z z 2 0 〈 S d dhS i ΓN ΓN 〈 I / −Γ = sech2 t Γ dt 4 2 I=- -N/2 0 tD tD Problem: dipole interactions dephase. [Friedberg et al, Phys. Lett. 1972] Dicke effect: Enhanced emission X y − −ik·ri Hint = gk k Si e + H.c. k;i Jonathan Keeling Collective dynamics Harvard, January 2012 3 / 25 N/2 2 ΓN /2 z = j j = = /dt If S S N 2 initially: 〉 z 〉 S z z 2 0 〈 S d dhS i ΓN ΓN 〈 I / −Γ = sech2 t Γ dt 4 2 I=- -N/2 0 tD tD Problem: dipole interactions dephase. [Friedberg et al, Phys. Lett. 1972] Dicke effect: Enhanced emission X y − −ik·ri Hint = gk k Si e + H.c. k;i If jr − r j λ, use P S ! S dρ Γ i j i i = − S+S−ρ − S−ρS+ + ρS+S− Collective decay: dt 2 Jonathan Keeling Collective dynamics Harvard, January 2012 3 / 25 N/2 2 ΓN /2 /dt 〉 z 〉 S z 0 〈 S d 〈 Γ I=- -N/2 0 tD tD Problem: dipole interactions dephase. [Friedberg et al, Phys. Lett. 1972] Dicke effect: Enhanced emission X y − −ik·ri Hint = gk k Si e + H.c. k;i If jr − r j λ, use P S ! S dρ Γ i j i i = − S+S−ρ − S−ρS+ + ρS+S− Collective decay: dt 2 If Sz = jSj = N=2 initially: dhSz i ΓN2 ΓN I / −Γ = sech2 t dt 4 2 Jonathan Keeling Collective dynamics Harvard, January 2012 3 / 25 N/2 2 ΓN /2 /dt 〉 z 〉 S z 0 〈 S d 〈 Γ I=- -N/2 0 tD tD Dicke effect: Enhanced emission X y − −ik·ri Hint = gk k Si e + H.c. k;i If jr − r j λ, use P S ! S dρ Γ i j i i = − S+S−ρ − S−ρS+ + ρS+S− Collective decay: dt 2 If Sz = jSj = N=2 initially: dhSz i ΓN2 ΓN I / −Γ = sech2 t dt 4 2 Problem: dipole interactions dephase. [Friedberg et al, Phys. Lett. 1972] Jonathan Keeling Collective dynamics Harvard, January 2012 3 / 25 If Sz = jSj = N=2 initially: 1600 __ __ 1600 T=2ln(√N)/√N N=2000 1400 1400 1200 1200 2 2 1000 1000 (t)| (t)| 800 800 ψ ψ | | 600 600 400 400 __ 200 1/√N 200 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 1 2 3 4 5 Time Time Collective radiation with a cavity: Dynamics X y − + Single cavity mode: oscillations Hint = Si + Si i [Bonifacio and Preparata PRA ’70; JK PRA ’09] Jonathan Keeling Collective dynamics Harvard, January 2012 4 / 25 1600 __ __ 1600 T=2ln(√N)/√N N=2000 1400 1400 1200 1200 2 2 1000 1000 (t)| (t)| 800 800 ψ ψ | | 600 600 400 400 __ 200 1/√N 200 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 1 2 3 4 5 Time Time Collective radiation with a cavity: Dynamics X y − + Single cavity mode: oscillations Hint = Si + Si z i If S = jSj = N=2 initially: [Bonifacio and Preparata PRA ’70; JK PRA ’09] Jonathan Keeling Collective dynamics Harvard, January 2012 4 / 25 1600 __ __ 1600 T=2ln(√N)/√N N=2000 1400 1400 1200 1200 2 2 1000 1000 (t)| (t)| 800 800 ψ ψ | | 600 600 400 400 __ 200 1/√N 200 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 1 2 3 4 5 Time Time Collective radiation with a cavity: Dynamics X y − + Single cavity mode: oscillations Hint = Si + Si z i If S = jSj = N=2 initially: [Bonifacio and Preparata PRA ’70; JK PRA ’09] Jonathan Keeling Collective dynamics Harvard, January 2012 4 / 25 ω ⇓ SR 0 0 g-√N 2 Spontaneous polarisation if: Ng > !!0 Dicke model: Equilibrium superradiance transition y z y − + H = ! + !0S + g S + S . y + Coherent state: jΨi ! eλψ +ηS jΩi Energy: ! N jηj2 − 1 η∗λ + λ∗η E = !jλj2 + 0 + gN 2 jηj2 + 1 1 + jηj2 Small g, min at λ, η = 0 [Hepp, Lieb, Ann. Phys. ’73] Jonathan Keeling Collective dynamics Harvard, January 2012 5 / 25 ω ⇓ SR 0 0 g-√N 2 Spontaneous polarisation if: Ng > !!0 Dicke model: Equilibrium superradiance transition y z y − + H = ! + !0S + g S + S . y + Coherent state: jΨi ! eλψ +ηS jΩi Energy: ! N jηj2 − 1 η∗λ + λ∗η E = !jλj2 + 0 + gN 2 jηj2 + 1 1 + jηj2 Small g, min at λ, η = 0 [Hepp, Lieb, Ann. Phys. ’73] Jonathan Keeling Collective dynamics Harvard, January 2012 5 / 25 ω ⇓ SR 0 0 g-√N 2 Spontaneous polarisation if: Ng > !!0 Dicke model: Equilibrium superradiance transition y z y − + H = ! + !0S + g S + S . y + Coherent state: jΨi ! eλψ +ηS jΩi Energy: ! N jηj2 − 1 η∗λ + λ∗η E = !jλj2 + 0 + gN 2 jηj2 + 1 1 + jηj2 Small g, min at λ, η = 0 [Hepp, Lieb, Ann. Phys. ’73] Jonathan Keeling Collective dynamics Harvard, January 2012 5 / 25 ω ⇓ SR 0 0 g-√N Dicke model: Equilibrium superradiance transition y z y − + H = ! + !0S + g S + S . y + Coherent state: jΨi ! eλψ +ηS jΩi Energy: ! N jηj2 − 1 η∗λ + λ∗η E = !jλj2 + 0 + gN 2 jηj2 + 1 1 + jηj2 Small g, min at λ, η = 0 2 Spontaneous polarisation if: Ng > !!0 [Hepp, Lieb, Ann. Phys. ’73] Jonathan Keeling Collective dynamics Harvard, January 2012 5 / 25 No go theorem:. Minimal coupling (p − eA)2=2m X e X A2 − A · p , g( yS− + S+); , Nζ( + y)2 m i 2m i i For large N, ! ! ! + 2Nζ. (RWA) 2 Need Ng > !0(! + 2Nζ). 2 But Thomas-Reiche-Kuhn sum rule states: g =!0 < 2ζ. No transition No go theorem and transition 2 Spontaneous polarisation if: Ng > !!0 [Rzazewski et al PRL ’75] Jonathan Keeling Collective dynamics Harvard, January 2012 6 / 25 For large N, ! ! ! + 2Nζ. (RWA) 2 Need Ng > !0(! + 2Nζ). 2 But Thomas-Reiche-Kuhn sum rule states: g =!0 < 2ζ. No transition No go theorem and transition 2 Spontaneous polarisation if: Ng > !!0 No go theorem:. Minimal coupling (p − eA)2=2m X e X A2 − A · p , g( yS− + S+); , Nζ( + y)2 m i 2m i i [Rzazewski et al PRL ’75] Jonathan Keeling Collective dynamics Harvard, January 2012 6 / 25 2 Need Ng > !0(! + 2Nζ). 2 But Thomas-Reiche-Kuhn sum rule states: g =!0 < 2ζ. No transition No go theorem and transition 2 Spontaneous polarisation if: Ng > !!0 No go theorem:. Minimal coupling (p − eA)2=2m X e X A2 − A · p , g( yS− + S+); , Nζ( + y)2 m i 2m i i For large N, ! ! ! + 2Nζ. (RWA) [Rzazewski et al PRL ’75] Jonathan Keeling Collective dynamics Harvard, January 2012 6 / 25 2 But Thomas-Reiche-Kuhn sum rule states: g =!0 < 2ζ. No transition No go theorem and transition 2 Spontaneous polarisation if: Ng > !!0 No go theorem:. Minimal coupling (p − eA)2=2m X e X A2 − A · p , g( yS− + S+); , Nζ( + y)2 m i 2m i i For large N, ! ! ! + 2Nζ. (RWA) 2 Need Ng > !0(! + 2Nζ). [Rzazewski et al PRL ’75] Jonathan Keeling Collective dynamics Harvard, January 2012 6 / 25 No go theorem and transition 2 Spontaneous polarisation if: Ng > !!0 No go theorem:. Minimal coupling (p − eA)2=2m X e X A2 − A · p , g( yS− + S+); , Nζ( + y)2 m i 2m i i For large N, ! ! ! + 2Nζ. (RWA) 2 Need Ng > !0(! + 2Nζ). 2 But Thomas-Reiche-Kuhn sum rule states: g =!0 < 2ζ. No transition [Rzazewski et al PRL ’75] Jonathan Keeling Collective dynamics Harvard, January 2012 6 / 25 Cavity κ κ Pump Pump Dicke phase transition: ways out 2 Problem: g =!0 < 2ζ for intrinsic parameters. Solutions: Non-solution Ferroelectric transition in D · r gauge. [JK JPCM ’07 ] See also [Nataf and Ciuti, Nat. Comm. ’10; Viehmann et al. PRL ’11] Grand canonical ensemble: z y I If H ! H − µ(S + ), need only: 2 g N > (! − µ)(!0 − µ) I Incoherent pumping — polariton condensation. Dissociate g;!0, e.g. Raman scheme: !0 !. [Dimer et al. PRA ’07; Baumann et al. Nature ’10. Also, Black et al. PRL ’03 ] Jonathan Keeling Collective dynamics Harvard, January 2012 7 / 25 Cavity κ κ Pump Pump Dicke phase transition: ways out 2 Problem: g =!0 < 2ζ for intrinsic parameters.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    87 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us