CERI 7022/8022 Global Geophysics Spring 2016

CERI 7022/8022 Global Geophysics Spring 2016

FerrimagnetismI I Recall three types of magnetic properties of materials I Diamagnetism I Paramagnetism I Ferromagnetism I Anti-ferromagnetism I Parasitic ferromagnetism I Ferrimagnetism I Ferrimagnetism I Spinel structure is one of the common crystal structure of rock-forming minerals. I Tetrahedral and octahedral sites form two sublattices. 2+ 3+ I Fe in 1/8 of tetrahedral sites, Fe in 1/2 of octahedral sites. FerrimagnetismII I xmujpkc.xmu.edu.cn/jghx/source/chapter9.pdf Ferrimagnetism III I www.tf.uni-kiel.de/matwis/amat/def_en/kap_2/basics/b2_1_6.html I Anti-spinel structure of the most common iron oxides 3+ 3+ 2+ I Fe in 1/8 tetrahedral sites, (Fe , Fe ) in 1/2 of octahedral sites. FerrimagnetismIV I Indirect exchange involves antiparallel and unequal magnetization of the sublattices, a net spontaneous magnetization appears. This phenomenon is called ferrimagnetism. I Ferrimagnetic materials are called ferrites. I Ferrites exhibit magnetic hysteresis and retain remanent magnetization (i.e. behaves like ferromagnets.) I Above the Curie temperature, becomes paramagnetic. I Magnetite (Fe3O4), maghemite, pyrrhotite and goethite (' rust). Magnetic properties of rocksI I Matrix minerals are mainly silicates or carbonates, which are diamagnetic. I Secondary minerals (e.g., clays) have paramagnetic properties. I So, the bulk of constituent minerals have a magnetic susceptibility but not remanent magnetic properties. I Variable concentrations of ferrimagnetic and matrix minerals result in a wide range of susceptibilities in rocks. Magnetic properties of rocksII I I The weak and variable concentration of ferrimagnetic minerals plays a key role in determining the magnetic properties of the rock. Magnetic properties of rocks III I Important factors influencing rock magnetism: I The type of ferrimagnetic mineral. I its grain size. I the manner in which it acquires a remanent magnetization. I We’ll learn more about each of these. Ferrimagnetic MineralsI I The most important ferrimagnetic minerals: Fe-Ti oxides. Ferrimagnetic MineralsII I Titanomagnetite series I Responsible for the magnetic properties of oceanic basalts. I 0.5 km-thick surface basaltic layer of the oceanic crust has very fine grained titanomagnetite or titanomaghemite I Molecular fraction of ulvöspinel is about 0.6 in oceanic basalts. Ferrimagnetic Minerals III I I Magnetite (Fe3O4) 5 I Has a strong spontaneous magnetization (Ms = 4.8 × 10 Am−1. ◦ I Curie temperature of 578 C. Ferrimagnetic MineralsIV I Susceptibility is the strongest of any naturally occurring mineral. I Maghemite (γ−Fe2O3) I Produced by low-temperature oxidation of magnetite. I Likewise, titanomagnetite becomes titanomaghemite by low-T oxidation. 5 I Has a strong spontaneous magnetization (Ms = 4.5 × 10 Am−1. I Titanohematite series I The Curie temperature and cell size shows the same trend with titanomagnetite as Ti content changes. I Hematite (α−Fe2O3) I Parasitic-ferromagnetism. 3 −1 I Has a relatively weak Ms, 2.2 × 10 Am . I Important for paleomagnetics because of abundance and stability. Grain sizeI I Magnetic relaxation, i.e., decrease of magnetization with time, occurs in ferrimagnetic materials. I The relaxation is described as t M (t) = M exp − ; (1) r r0 τ and the relaxation time τ is given as 1 ν K τ = exp u ; (2) ν0 κ T where ν is the grain volume. I So, the relaxation is slower in a bigger grain. I Read Sec. 5.3.5 of Lowry (1997 or 2004) for details. Remanent MagnetizationI I The small concentration of ferrimagnetic minerals in a rock has the ability to acquire a remanent magnetization (or just remanence). I The untreated remanence of a rock is called it natural remanent magnetization (NRM). I Remanence acuqired at known times in the rock’s history, such as rock formation and subsequent alteration, is geologically important. I Primary magnetization: A remanence acquired at or close to the time of formation of the rock. Secondary if acquired at a later time. I Thermoremanent magnetization of igneous rocks or depositional remanent magnetization of sedimentary rocks are primary. Remanent MagnetizationII I Secondary remanence may be caused by chemical change of the rock during diagenesis or weathering or by sampling and lab procedure. I Thermal remanent magnetization (TRM) I What is a blocking temperature? Read Sec. 5.3.6.1. Remanent Magnetization III I Depositional and post-depositional remanent magnetization (DRM or pDRM) Remanent MagnetizationIV I DRM I Small ferrimagnetic mineral grains oriented like a compass needle. I Declination (due to water current) and inclination (due to grain rolling) error I pDRM I Very fine grains suspended in pore space can be oriented along the external magnetic field. I Occurs within the top ∼10 cm of sediments. I Lock-in time delay of 100 to 10k yrs. Remanent MagnetizationV I Chemical remanent magnetization (CRM) Remanent MagnetizationVI I Isothermal Remanent Magnetism (IRM) Remanent Magnetization VII I Isothermal Remanent Magnetism (IRM) cont’d Remanent Magnetization VIII I Environmental magnetism I Biogenic magnetite: I Evolutionary feature: When sedimentary layers are disrupted, magnetotactic bacteria can follow the geomagnetic field lines back down to the sediments rich in nutrition they need. I Submicroscopic magnetites found in the brains of dolphins and birds. I Also nanometer-scale magnetites found in the human brain, which may be related to neurological disorders such as epilepsy, Alzheimer’s disease and Parkinson’s disease..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    20 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us