Undulator Radiation & FEL

Undulator Radiation & FEL

<p><strong>U.S. Particle Accelerator School January 25 – February 19, 2021 </strong></p><p><strong>VUV and X-ray Free-Electron Lasers Introduction, Electron Motions in an </strong><br><strong>Undulator, Undulator Radiation &amp; FEL </strong></p><p>Dinh C. Nguyen,<sup style="top: -0.7em;">1 </sup>Petr Anisimov,<sup style="top: -0.7em;">2 </sup>Nicole Neveu<sup style="top: -0.7em;">1 </sup></p><p><sup style="top: -0.6em;">1 </sup>SLAC National Accelerator Laboratory <br><sup style="top: -0.6em;">2 </sup>Los Alamos National Laboratory </p><p>LA-UR-21-20610 </p><p><strong>Monday (Jan 25) Lecture Outline </strong></p><p>Time <br>• VUV and X-ray FELs in the World • Properties of electromagnetic radiation • Break <br>10:00 – 10:30 10:30 – 10:50 10:50 – 11:00 11:00 – 11:20 </p><p>11:20 – 11:40 </p><p>11:40 – Noon <br>• Electron motions in an undulator </p><p>• Undulator radiation </p><p>• Introduction to FELs </p><p>2</p><p><strong>VUV and X-ray FELs in the World </strong></p><p>3</p><p><strong>World Map of VUV and X-ray FELs </strong></p><p>FLASH <br>FERMI </p><p>European XFEL </p><p>Italy <br>Germany </p><p>SPARC </p><p>Italy </p><p>LCLS <br>SwissFEL </p><p>POLFEL </p><p>Poland </p><p>LCLS-II &amp; LCLS-II-HE </p><p>USA <br>Switzerland </p><p>PAL XFEL </p><p>S. Korea </p><p>SACLA </p><p>Japan </p><p>SDUV-SXFEL </p><p>SHINE </p><p>China </p><p>Blue=VUV to Soft X-ray </p><p>Purple=Soft to Hard X-ray </p><p>4</p><p><strong>Sub-systems of an RF Linac Driven X-ray FEL </strong></p><p>An RF-linac driven XFEL has the following sub-systems in order to produce </p><p>Low-emittance </p><p>• <strong>PHOTOINJECTOR </strong>to generate low-emittance electrons in ps bunches </p><p>electron beams </p><p>• <strong>RF LINAC </strong>to accelerate the electron beams to GeV energy • <strong>BUNCH COMPRESSORS </strong>to shorten the bunches and produce kA current </p><p>High peak current </p><p>• <strong>LASER HEATER </strong>to reduce the microbunching instabilities </p><p>• <strong>BEAM OPTICS </strong>to transport the electron beams to the undulators </p><p>Single-pass, high- </p><p>• <strong>UNDULATORS </strong>to generate and amplify the radiation in a single pass </p><p>gain X-ray FEL </p><p>• <strong>DIAGNOSTICS </strong>to characterize the electron &amp; FEL beams </p><p>Laser </p><ul style="display: flex;"><li style="flex:1">Photoinjector heater </li><li style="flex:1">BC2 </li></ul><p>L2 </p><p>L3 <br>Undulators <br>Optics <br>L1 <br>L0 <br>X-rays </p><p>electrons </p><p>5</p><p>Layout of the sub-systems of the LCLS first X-ray FEL </p><p><strong>Linac Coherent Light Source </strong></p><p><strong>LCLS-II </strong><br><strong>LCLS-II-HE </strong></p><p><strong>Photoinjector </strong></p><p><strong>The last 1 km of the SLAC linac </strong></p><p><strong>accelerates electrons up to 15 GeV </strong></p><p><strong>Starting at Sector 20, electron bunches are injected at 135 MeV </strong></p><p><strong>Linac-to-Undulator Transport (340m) </strong></p><p><strong>140-m long undulator hall with 2 side-by-side undulators, Hard X-ray (HXR) and Soft X-ray (SXR) </strong></p><p><strong>Near Experimental Hall </strong></p><p><strong>Far Experimental Hall </strong></p><p>6</p><p><strong>RF-linac Driven FEL Pulse Format </strong></p><p><strong>Low-repetition-rate Mode (e.g., LCLS CuRF) </strong></p><p>~8 ms (1/120 Hz) <br>~10 fs </p><p><strong>Burst Mode (e.g., Eu-XFEL) </strong></p><p></p><ul style="display: flex;"><li style="flex:1">~1 ms macropulse </li><li style="flex:1">~1 ms macropulse </li></ul><p>~100 ms (1/10 Hz) </p><p>~200ns </p><p>micropulses </p><p><strong>Continuous-Wave Mode (e.g., LCLS-II/HE, SHINE) </strong></p><p>~1 ms (1/MHz) </p><p>7</p><p><strong>LCLS-II-HE Soft X-ray Undulator </strong></p><p><strong>Planar Undulators </strong></p><p><strong>strongback </strong></p><p><strong>magnetic field electron beam </strong></p><p><strong>magnets </strong></p><p><sub style="top: 0.31em;">푢 </sub></p><p><strong>X-ray polarization (same direction as electron oscillations) </strong></p><p>Undulator magnetic field varies sinusoidally with <em>z </em>and points in the <em>y </em>direction </p><p>ෝ</p><p><strong>B </strong>= 퐵<sub style="top: 0.41em;">0</sub>푠푖푛 푘<sub style="top: 0.41em;">푢</sub>푧 풚 </p><p>Planar undulators produce linearly (plane) polarized radiation at the fundamental frequency and also at harmonic frequencies. </p><p>8</p><p><strong>Helical Superconducting Undulators </strong></p><p>Superconducting coils are wound around </p><p>the electron beam pipe in a helical pattern. </p><p>Undulator magnetic field varies sinusoidally </p><p>with <em>z </em>and points in both <em>x </em>and <em>y </em>directions in a helical fashion. </p><p></p><ul style="display: flex;"><li style="flex:1">ෝ</li><li style="flex:1">ෝ</li></ul><p><strong>B </strong>= 퐵<sub style="top: 0.41em;">0 </sub>푐표푠 푘<sub style="top: 0.41em;">푢</sub>푧 풙&nbsp;+ 푠푖푛&nbsp;푘<sub style="top: 0.41em;">푢</sub>푧 풚 <br>2휋 </p><p>Undulator wavenumber </p><p>푘<sub style="top: 0.41em;">푢 </sub>= </p><p><sub style="top: 0.41em;">푢 </sub></p><p>Helical undulators produce circularly </p><p>polarized radiation at the fundamental </p><p>frequency. Helical&nbsp;undulators do not produce undulator radiation at the harmonic frequencies. <br>Snapshots of the helical undulator magnetic field at different locations in one undulator period. </p><p>9</p><p><strong>Delta Undulators (Variable Polarization) </strong></p><p>Varying the linear positions of the magnet jaws changes radiation polarization from linear to circular </p><p>Delta undulator cross-section </p><p>10 </p><p><strong>X-ray FEL Wavelength for a Planar Undulator </strong></p><p><strong>Undulator period </strong><br><strong>FEL resonant wavelength </strong></p><p><sub style="top: 0.48em;">푢 </sub></p><p>2훾<sup style="top: -0.7em;">2 </sup></p><p>퐾<sup style="top: -0.85em;">2 </sup></p><p>2</p><p><strong>Undulator parameter </strong></p><p> = </p><p>1 + </p><p>ꢃ퐵<sub style="top: 0.4117em;">0 </sub></p><p>ꢃ<sub style="top: 0.41em;">푢</sub>퐵<sub style="top: 0.41em;">0 </sub></p><p><em>K </em>= </p><p>=</p><p><strong>Lorentz relativistic factor </strong></p><p><strong>(Dimensionless beam energy) </strong></p><p></p><ul style="display: flex;"><li style="flex:1">푘<sub style="top: 0.41em;">푢</sub>ꢂ<sub style="top: 0.41em;">푒</sub>푐 </li><li style="flex:1">2휋ꢂ<sub style="top: 0.41em;">푒</sub>푐 </li></ul><p></p><p>Dimensionless <em>K </em>parameter is a measure </p><p>of how much the electron beam is </p><p>deflected transversely in the undulator </p><p>퐸<sub style="top: 0.41em;">푡ꢁ푡푎푙 </sub></p><p>훾 = </p><p><em>K </em>= 0.934 퐵<sub style="top: 0.41em;">0</sub><sub style="top: 0.41em;">푢 </sub></p><p>ꢂ<sub style="top: 0.41em;">푒</sub>푐<sup style="top: -0.6em;">2 </sup></p><p>퐾</p><p>휃<sub style="top: 0.34em;">푚푎ꢀ </sub></p><p>=</p><p>푥</p><p>훾</p><p><em>B</em><sub style="top: 0.41em;">0 </sub>in tesla&nbsp;<sub style="top: 0.3342em;">푢</sub>in cm </p><p></p><p><sub style="top: 0.312em;"><em>u </em></sub>+  </p><p>radiation wave </p><p>휃<sub style="top: 0.31em;">푚푎ꢀ </sub></p><p>푧</p><p></p><p>e- trajectory </p><p><sub style="top: 0.37em;"><em>u </em></sub></p><p>11 </p><p><strong>Electron Beam Kinematics </strong></p><p><strong>Dimensionless electron beam energy </strong><br><strong>Electron velocity relative to the speed of light </strong></p><p>푣<br>훽 = <br>푐</p><p>퐸<sub style="top: 0.41em;">푡ꢁ푡푎푙 </sub></p><p>훾 = <br>ꢂ<sub style="top: 0.41em;">푒</sub>푐<sup style="top: -0.6em;">2 </sup></p><p>Using the g-b relation, we can calculate b </p><p>퐸<sub style="top: 0.41em;">푡ꢁ푡푎푙 </sub>= 퐸<sub style="top: 0.41em;">ꢄ </sub>+ ꢂ<sub style="top: 0.41em;">푒</sub>푐<sup style="top: -0.73em;">2 </sup></p><p>1</p><p>1</p><p>훾<sup style="top: -0.6em;">2 </sup></p><p>훾 = <br>훽 =&nbsp;1 − <br>1 − 훽<sup style="top: -0.6em;">2 </sup></p><p>Rest mass energy <br>Kinetic energy <br>0.511 MeV </p><p>Approximate b for </p><p>GeV electrons </p><p>1</p><p><strong>Approximate g for GeV electrons </strong></p><p>훽 ≈ 1 − <br>2훾<sup style="top: -0.6em;">2 </sup></p><p>퐸<sub style="top: 0.4102em;">푡ꢁ푡푎푙 </sub>≈ 퐸<sub style="top: 0.4102em;">ꢄ </sub>= 퐸<sub style="top: 0.4102em;">푏 </sub></p><p>We shall see later the longitudinal component of the velocity, <em>ʋ</em><sub style="top: 0.41em;"><em>z </em></sub>is reduced when the electrons undergo transverse oscillations in the undulator. </p><p>훾 ≈ 1957 퐸<sub style="top: 0.37em;">푏 </sub>퐺ꢃ푉 </p><p>12 </p><p><strong>X-ray FEL Wavelength Tuning </strong></p><p>The <strong>FEL x-ray wavelength </strong>can be tuned by one of the following methods 1. varying&nbsp;the electron <strong>beam energy</strong>, <strong>E</strong><sub style="top: 0.41em;">b </sub>and thus the beam <strong>g </strong>2. varying&nbsp;the <strong>gap </strong>by moving the magnet jaws symmetrically in and out, thus changing the <strong>K </strong>value </p><p>2</p><p>The on-axis magnetic field amplitude depends </p><p>on the gap-to-period ratio. The remanence </p><p></p><ul style="display: flex;"><li style="flex:1">푔</li><li style="flex:1">푔</li></ul><p>퐵<sub style="top: 0.34em;">0 </sub>푔, <sub style="top: 0.34em;">푢 </sub>= 3.13퐵<sub style="top: 0.34em;">푟 </sub>ꢃ푥푝 −5.08 <br>+ 1.54 </p><p></p><ul style="display: flex;"><li style="flex:1"><sub style="top: 0.34em;">푢 </sub></li><li style="flex:1"><sub style="top: 0.34em;">푢 </sub></li></ul><p></p><p>퐵</p><p>magnetic field,&nbsp;of NdFeB is about 1.2 tesla. </p><p>푟</p><p>Larger gap – Smaller <em>K </em>– Shorter  <br>Small gap – Large <em>K </em>– Long  </p><p>gap </p><p>gap e- beam e- beam </p><p>magnets poles </p><p>13 </p><p>period </p><p><strong>LCLS-II-HE Variable-Gap Soft X-ray Undulator </strong></p><p>K</p><p>SXR <em>K </em>parameter vs gap (mm) </p><p>10 </p><p>This example illustrates how we change the LCLS X-ray FEL </p><p>9</p><p>wavelength by varying the magnet gap of the Soft X-ray (SXR) undulator which has an undulator period of 56 mm. </p><p>87</p><p>6</p><p>5</p><p><em>K</em></p><p>The undulator <em>K </em>parameter decreases and photon energy </p><p>4</p><p>increases as we increase the gap (right figures), using the LCLS-II-HE 8-GeV electron beams as an example. </p><p>321</p><p>However, opening the gap to increase the photon energy also reduces the FEL output pulse energy (below). </p><p>0</p><p>7.2 9.2&nbsp;11.2 13.2 15P.2h1o7t.2o1n9.2en21e.2rg23y.2 25.2 27.2 29.2 31.2 <br>5000 </p><p>3.5 </p><p>4500 </p><p>Photon energy (eV) vs gap (mm) </p><p>3<br>2.5 <br>2</p><p>4000 </p><p>3500 3000 2500 2000 1500 1000 <br>500 </p><p>Photon energy (eV) <br>Output pulse energy (mJ) </p><p>1.5 </p><p>1</p><p>0.5 <br>0<br>0<br>7.2 9.2&nbsp;11.2 13.2 15.2 17.2 19.2 21.2 23.2 25.2 27.2 29.2 31.2 </p><p>14 </p><p>Photon energy (eV) gap (mm) </p><p><strong>Properties of Electromagnetic Radiation </strong></p><p>15 </p><p><strong>EM Radiation in Free Space </strong></p><p>ℎ = 4.1357&nbsp;∙ 10<sup style="top: -0.61em;">−15 </sup>ꢃV ∙ 푠 </p><p>푐 = 2.9979&nbsp;∙ 10<sup style="top: -0.61em;">8 </sup>ꢂ/푠 </p><p></p><ul style="display: flex;"><li style="flex:1">Low frequency </li><li style="flex:1">Long wavelength </li></ul><p></p><p>= 1.23984&nbsp;∙ 10<sup style="top: -0.61em;">−6</sup>ꢃV−<em>m </em><br> ∙ ℎ휈 = ℎ푐 <br>1239.84 ꢃ푉 ℎ휈 = </p><p>Photon energy </p><p>λ 푛ꢂ </p><p>푥</p><p>푐</p><p>푦<br>푧</p><p></p><ul style="display: flex;"><li style="flex:1">High frequency </li><li style="flex:1">Short wavelength </li></ul><p></p><p>16 </p><p><strong>Accelerated charged particles emit EM radiation </strong></p><p><strong>Radiation from circular motions </strong></p><p>Bremsstrahlung Synchrotron radiation </p><p><strong>Radiation from oscillatory motions </strong></p><p>17 </p><p><strong>Generations of Beam-based Radiation Sources </strong></p><p>• <strong>X-ray Tubes </strong></p><p>– X-ray tubes emit <strong>Bremsstrahlung </strong>and <strong>characteristic peaks </strong></p><p>– Characteristic peaks are narrow-line atomic transitions </p><p>• <strong>Synchrotron Radiation (1</strong><sup style="top: -0.38em;"><strong>st </strong></sup><strong>and 2</strong><sup style="top: -0.38em;"><strong>nd </strong></sup><strong>Generation Light Sources) </strong></p><p>– Electrons going around bends produce <strong>synchrotron radiation </strong></p><p>– <strong>First generation SR </strong>operated as parasitic radiation devices </p><p>– <strong>Second generation SR </strong>are dedicated to radiation production </p><p>• <strong>Synchrotron Radiation (3</strong><sup style="top: -0.38em;"><strong>rd </strong></sup><strong>Generation Light Sources) </strong></p><p>– <strong>3</strong><sup style="top: -0.38em;"><strong>rd </strong></sup><strong>Gen SR </strong>have low-emittance lattice with straight sections </p><p>– <strong>Bending magnet </strong>and <strong>wiggler radiation </strong>is broadband – <strong>Undulator radiation </strong>has narrow spectral lines </p><p>• <strong>X-ray Free-Electron Lasers (4</strong><sup style="top: -0.38em;"><strong>th </strong></sup><strong>Generation Light Sources) </strong></p><p>– <strong>XFEL </strong>produce coherent, tunable, narrow-band x-rays – X-ray pulses are typically a few femtoseconds long – <strong>FEL peak brilliance </strong>is typically 10 orders of magnitude brighter </p><p>than <strong>third-generation SR. </strong></p><p>18 </p><p><strong>Electric Field of a Gaussian Wave-Packet </strong></p><p>2</p><p><strong>Complex electric </strong></p><p><strong>field of a Gaussian </strong></p><p><strong>wave-packet </strong></p><p>ꢈ−ꢈ </p><p>0</p><p>−</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">퐸(푧, ꢅ) = 퐸<sub style="top: 0.48em;">0</sub>ꢃ<sup style="top: -0.85em;">ꢆ ꢄꢇ−휔푡+휓 </sup></li><li style="flex:1">ꢃ</li></ul><p></p><p>+ c.c. </p><p>2휎 <br>ꢈ</p><p>Phase <br>Amplitude </p><p>Gaussian envelope rms temporal width <br>Wavenumber </p><p>Angular frequency </p><p>2휋 <br>푘 = </p><p></p><p>2휋푐 <br>ꢉ = </p><p><strong>Radiation intensity </strong></p><p></p><p>1</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">퐼 = </li><li style="flex:1">퐸 푧,&nbsp;ꢅ </li></ul><p>2푍<sub style="top: 0.4117em;">0 </sub></p><p>Normalized </p><p>intensity envelope </p><p>Fast carrier waves at w </p><p>1</p><p>2</p><p>퐼<sub style="top: 0.41em;">0 </sub>= </p><p>퐸<sub style="top: 0.41em;">0 </sub></p><p>2푍<sub style="top: 0.412em;">0 </sub></p><p>Gaussian envelope </p><p>Impedance of free space = 120p  </p><p>19 </p><p><strong>Fourier Transform a Gaussian Pulse </strong></p><p>2</p><p>Consider only the time-dependent part of a </p><p>푡</p><p>−</p><p>퐸<sub style="top: 0.34em;">0 </sub></p><p>න ꢃ<sup style="top: -0.73em;">−ꢆ 휔−휔 푡 </sup></p><p></p><ul style="display: flex;"><li style="flex:1">ꢃ</li><li style="flex:1"><sup style="top: -1.21em;">2 </sup>푑ꢅ </li></ul><p></p><p>Gaussian wave-packet. Its Fourier Transform </p><p>2ꢋ </p><p>ꢊ</p><p>ℰ(ꢉ) = </p><p>ꢈ</p><p>2휋 <br>ꢉ</p><p>is a Gaussian spectrum centered at ± </p><p>푟</p><p>2<br>2</p><p>휔−휔 <br>푡</p><p>ꢊ</p><p>ꢃ<sup style="top: -1.58em;">− </sup></p><p>−</p><p>퐸<sub style="top: 0.34em;">0 </sub></p><p>2<br>2</p><p>2ꢋ </p><p></p><ul style="display: flex;"><li style="flex:1">퐸(ꢅ) = 퐸<sub style="top: 0.41em;">0</sub>ꢃ<sup style="top: -0.73em;">−ꢆ휔 푡 </sup></li><li style="flex:1">ꢃ</li></ul><p></p><p>2ꢋ </p><p></p><ul style="display: flex;"><li style="flex:1">ꢍ</li><li style="flex:1">ꢊ</li></ul><p></p><p>ℰ(ꢉ) = </p><p>ꢈ</p><p>2ꢌ<sub style="top: 0.34em;">휔 </sub></p><p>Fourier Transform limit </p><p>of time-bandwidth </p><p>2ꢌ<sub style="top: 0.34em;">푡 </sub></p><p>product (rms widths) </p><p>2</p><p>ℰ ꢉ </p><p>ꢌ<sub style="top: 0.41em;">휔</sub>ꢌ<sub style="top: 0.41em;">푡 </sub>= ½ </p><p>2ꢌ<sub style="top: 0.27em;">휔 </sub></p><p>In general, TBW is </p><p>larger than 1/2 </p><p>ꢉ<sub style="top: 0.24em;">푟 </sub></p><p>Time domain </p><p>Frequency domain </p><p>20 </p><p><strong>Radiation Pulse &amp; Time-Bandwidth Product </strong></p><p>Linear frequency <br>Full-width-at-half-maximum (FWHM) in <br>FWHM </p><p>ꢉ</p><ul style="display: flex;"><li style="flex:1">훿ꢅ </li><li style="flex:1">훿휈 </li></ul><p></p><p>time and&nbsp;linear frequency domain </p><p>휈 = </p><p>2휋 </p><p>• Time-bandwidth product for a Gaussian pulse </p><p>2</p><p>퐸 ꢅ </p><p>dꢅ </p><p>4ꢎ푛2 </p><p></p><ul style="display: flex;"><li style="flex:1">훿휈 ∙ 훿ꢅ = </li><li style="flex:1">ꢌ<sub style="top: 0.34em;">휔</sub>ꢌ<sub style="top: 0.34em;">푡 </sub>= 0.44 </li></ul><p>훿ꢅ = 2&nbsp;2ꢎ푛2 ꢌ<sub style="top: 0.34em;">푡 </sub></p><p>휋</p><p>• Multiply both sides by the Planck’s constant in <em>e</em>V-s </p><p></p><ul style="display: flex;"><li style="flex:1">-4.0 </li><li style="flex:1">-3.0 </li><li style="flex:1">-2.0 </li><li style="flex:1">-1.0 </li><li style="flex:1">0.0 </li><li style="flex:1">1.0 </li><li style="flex:1">2.0 </li><li style="flex:1">3.0 </li><li style="flex:1">4.0 </li></ul><p></p><p>ꢅ − ꢅ<sub style="top: 0.24em;">0 </sub></p><p>ℎ = 4.136 ∙ 10<sup style="top: -0.61em;">−15 </sup>ꢃV-s </p><p>ꢌ<sub style="top: 0.34em;">휔 </sub></p><p>2휋 <br>훿휈 = 2&nbsp;2ꢎ푛2 ℎ훿휈 ∙ 훿ꢅ = 1.82 ꢃ푉 ∙ 푓푠 </p><p>훿휈 </p><p><strong>Energy (eV) – time FWHM product </strong></p><p>2</p><p>ℰ 휈 </p><p>훿휀 ∙ 훿ꢅ ≥ 1.82 ꢃ푉 ∙ 푓푠 </p><p></p><ul style="display: flex;"><li style="flex:1">-4.0 </li><li style="flex:1">-3.0 </li><li style="flex:1">-2.0 </li><li style="flex:1">-1.0 </li><li style="flex:1">0.0 </li><li style="flex:1">1.0 </li><li style="flex:1">2.0 </li><li style="flex:1">3.0 </li><li style="flex:1">4.0 </li></ul><p></p><p>휈 − 휈<sub style="top: 0.24em;">푟 </sub></p><p>21 </p><p><strong>Wave Equation &amp; Helmholtz Equation </strong></p><p>1 휕<sup style="top: -0.73em;">2 </sup></p><p>푐<sup style="top: -0.6em;">2 </sup>휕ꢅ<sup style="top: -0.6em;">2 </sup></p><p>• Wave equation </p><p><sup style="top: -0.73em;">2 </sup>− </p><p>ꢏ 풓,&nbsp;ꢅ =&nbsp;0 </p><p>ꢏ 풓,&nbsp;ꢅ =&nbsp;Re  풓 ꢃ<sup style="top: -0.73em;">−ꢆ휔 푡 </sup></p><p>ꢊ</p><p>• Solution to the wave equation </p><p>Time-independent wave amplitude <br>Time-dependent oscillatory term </p><p>• Helmholtz equation for the time-independent wave amplitude </p><p><sup style="top: -0.7317em;">2 </sup>+ 푘<sup style="top: -0.7317em;">2 </sup> 풓 =&nbsp;0 <br> 풓 =&nbsp;퐴 풓&nbsp;ꢃ<sup style="top: -0.732em;">ꢆ풌·풓 </sup></p><p>22 </p><p><strong>Paraxial Approximation </strong></p><p>Paraxial wave equation for a wave </p><p>휕</p><p><sup style="top: -0.76em;">ꢒ</sup><sub style="top: 0.45em;">푇 </sub>− 2푖푘&nbsp;퐴 푥,&nbsp;푦, 푧&nbsp;= 0 </p><p>propagating in the <em>z </em>direction </p><p>휕푧 </p><p>Gaussian beam transverse amplitude (beam propagating in the <em>z </em>direction) </p><p><sub style="top: 0.41em;"><em>T </em></sub>denotes transverse spreading due to optical diffraction </p><p></p><ul style="display: flex;"><li style="flex:1">휕<sup style="top: -0.73em;">ꢒ </sup></li><li style="flex:1">휕<sup style="top: -0.73em;">ꢒ </sup></li></ul><p></p><p><sup style="top: -0.76em;">ꢒ</sup><sub style="top: 0.45em;">푇 </sub>= </p><p>+</p><p>휕푥<sup style="top: -0.6025em;">ꢒ </sup>휕푦<sup style="top: -0.6025em;">ꢒ </sup>and 푘 =&nbsp;푘<sub style="top: 0.42em;">ꢀ</sub><sup style="top: -0.75em;">ꢒ </sup>+ 푘<sub style="top: 0.42em;">ꢐ</sub><sup style="top: -0.75em;">ꢒ </sup>+ 푘<sub style="top: 0.41em;">ꢇ</sub><sup style="top: -0.6em;">ꢒ </sup></p><p>푘<sub style="top: 0.41em;">ꢀ</sub><sup style="top: -0.73em;">ꢒ </sup>+ 푘<sub style="top: 0.41em;">ꢐ</sub><sup style="top: -0.73em;">ꢒ </sup>≪ 푘<sub style="top: 0.41em;">ꢇ</sub><sup style="top: -0.73em;">ꢒ </sup></p><p>Paraxial approximation </p><p>푦</p><p>푘 =&nbsp;푘 </p><p>For axisymmetric Gaussian beams, </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢐ</li></ul><p></p><p>2<br>2</p><p></p><ul style="display: flex;"><li style="flex:1">푟</li><li style="flex:1">푟</li></ul><p></p><p>ꢃ<sup style="top: -1.15em;">− </sup></p><p>ꢃ<sup style="top: -0.61em;">ꢆ ꢄꢇ−휔푡+휓 ꢇ&nbsp;</sup>ꢃ<sup style="top: -1.09em;">ꢆ ꢄ </sup></p><p>ꢑ</p><p>0</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">ꢑ ꢇ </li><li style="flex:1">ꢒ푅 ꢇ </li></ul><p></p><p>퐸(ꢓ, 푧) = 퐸<sub style="top: 0.41em;">0 </sub></p><p>ꢑ ꢇ </p><p>푥</p><p>Gouy phase shift </p><p>푤<sub style="top: 0.34em;">0 </sub>is the radius where the field </p><p>Radius of curvature of the Gaussian beam wavefront </p><p>decays to 1/e of <em>E</em><sub style="top: 0.41em;">0 </sub>at the beam waist </p><p>푤 푧&nbsp;is the 1/e radius at location <em>z </em></p><p>23 </p><p><strong>Gaussian Beam Intensity &amp; Diffraction </strong></p><p>퐼<sub style="top: 0.27em;">0 </sub></p><p>1</p><p>• Optical intensity </p><p>ꢒ</p><p></p><ul style="display: flex;"><li style="flex:1">퐼 ꢓ,&nbsp;푧 = </li><li style="flex:1">퐸 ꢓ,&nbsp;푧 </li></ul><p>2푍<sub style="top: 0.41em;">0 </sub></p><p>퐼 ꢓ </p><p>2</p><p>ꢒ푟 <br>ꢑ<br>ꢒ</p><p>• Gaussian beam </p><p>ꢃ<sup style="top: -1.13em;">− </sup></p><p>ꢑ</p><p>0<br>2</p><p>퐼(ꢓ, 푧) = 퐼<sub style="top: 0.41em;">0 </sub></p><p>푤<sub style="top: 0.27em;">0 </sub><br>퐼<sub style="top: 0.27em;">0 </sub></p><p>ꢑ</p><p>ꢃ<sup style="top: -0.4em;">ꢒ </sup></p><p>푧<sup style="top: -0.5em;">ꢒ </sup>푧<sub style="top: 0.45em;">R</sub><sup style="top: -0.62em;">ꢒ </sup></p><p></p><ul style="display: flex;"><li style="flex:1">-4.0 </li><li style="flex:1">-3.0 </li><li style="flex:1">-2.0 </li><li style="flex:1">-1.0 </li><li style="flex:1">0.0 </li><li style="flex:1">1.0 </li><li style="flex:1">2.0 </li><li style="flex:1">3.0 </li><li style="flex:1">4.0 </li></ul><p></p><p>푤 = 푤<sub style="top: 0.34em;">0 </sub>1 + </p><p>Beam profile at beam waist </p><p>• Gaussian beam diffracting from the beam waist </p><p>Far-field divergence half-angle </p><p>푤<sub style="top: 0.41em;">0 </sub></p><p>휆<br>휃 =&nbsp;= </p><p>푧<sub style="top: 0.41em;">푅 </sub>휋푤<sub style="top: 0.41em;">0 </sub></p><p>휆<br>휃푤<sub style="top: 0.41em;">0 </sub>= <br>휋</p><p>푧<sub style="top: 0.31em;">푅 </sub></p><p>24 </p><p><strong>Radiation Beam FWHM, Radius and Emittance </strong></p><p>Gaussian beam radial FWHM </p><p>퐼<sub style="top: 0.27em;">0 </sub></p><p>( 푤<sub style="top: 0.3117em;">0 </sub>= 1/e<sup style="top: -0.45em;">2 </sup>radius) </p><p>훿ꢓ<sub style="top: 0.34em;">퐹푊퐻푀 </sub>= 2ꢎ푛2&nbsp;푤<sub style="top: 0.34em;">0 </sub></p><p>Gaussian beam angular divergence FWHM </p><p>ꢌ<sub style="top: 0.27em;">푟 </sub></p><p>ꢌ<sub style="top: 0.35em;">푟</sub><sup style="top: -0.01em;">′ </sup></p><p>rms 퐼 = .606퐼<sub style="top: 0.31em;">0 </sub></p><p>(휃 = 1/e<sup style="top: -0.45em;">2 </sup>half-angle) </p><p>퐼 ꢓ </p><p>훿ꢓꢔ<sub style="top: 0.34em;">퐹푊퐻푀 </sub>= 2ꢎ푛2&nbsp;휃 </p><p>FHWM </p><p>퐼 ꢓ<sup style="top: -0.55em;">′ </sup></p><p>푤<sub style="top: 0.37em;">0 </sub></p><p>ꢌ<sub style="top: 0.37em;">푟 </sub>= </p><p>rms beam radius </p><p>1</p><p>ꢃ<sup style="top: -0.4em;">ꢒ </sup></p><p>2</p><p>푤<sub style="top: 0.27em;">0 </sub></p><p>휃<br>퐼 = .135퐼<sub style="top: 0.27em;">0 </sub></p><p>휃</p><p>2</p><p>rms angular divergence&nbsp;ꢌ<sub style="top: 0.4783em;">푟</sub><sup style="top: -0.02em;">′ </sup>= </p><p></p><ul style="display: flex;"><li style="flex:1">-4.0 </li><li style="flex:1">-3.0 </li><li style="flex:1">-2.0 </li><li style="flex:1">-1.0 </li><li style="flex:1">0.0 </li><li style="flex:1">1.0 </li><li style="flex:1">2.0 </li><li style="flex:1">3.0 </li><li style="flex:1">4.0 </li></ul><p></p><p>휖<sub style="top: 0.37em;">푟 </sub>= ꢌ<sub style="top: 0.37em;">푟</sub>ꢌ<sub style="top: 0.37em;">푟</sub><sup style="top: -0.67em;">′ </sup></p><p>Radial dimension (or angle) </p><p>Gaussian beam emittance </p><p>Photon beam emittance for </p><p>transversely incoherent (not </p><p>diffraction limited) radiation </p><p>휆<br>휆</p><p>ꢕ<sup style="top: -0.61em;">ꢒ </sup>&gt; 1 </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    69 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us