
<p><strong>U.S. Particle Accelerator School January 25 – February 19, 2021 </strong></p><p><strong>VUV and X-ray Free-Electron Lasers Introduction, Electron Motions in an </strong><br><strong>Undulator, Undulator Radiation & FEL </strong></p><p>Dinh C. Nguyen,<sup style="top: -0.7em;">1 </sup>Petr Anisimov,<sup style="top: -0.7em;">2 </sup>Nicole Neveu<sup style="top: -0.7em;">1 </sup></p><p><sup style="top: -0.6em;">1 </sup>SLAC National Accelerator Laboratory <br><sup style="top: -0.6em;">2 </sup>Los Alamos National Laboratory </p><p>LA-UR-21-20610 </p><p><strong>Monday (Jan 25) Lecture Outline </strong></p><p>Time <br>• VUV and X-ray FELs in the World • Properties of electromagnetic radiation • Break <br>10:00 – 10:30 10:30 – 10:50 10:50 – 11:00 11:00 – 11:20 </p><p>11:20 – 11:40 </p><p>11:40 – Noon <br>• Electron motions in an undulator </p><p>• Undulator radiation </p><p>• Introduction to FELs </p><p>2</p><p><strong>VUV and X-ray FELs in the World </strong></p><p>3</p><p><strong>World Map of VUV and X-ray FELs </strong></p><p>FLASH <br>FERMI </p><p>European XFEL </p><p>Italy <br>Germany </p><p>SPARC </p><p>Italy </p><p>LCLS <br>SwissFEL </p><p>POLFEL </p><p>Poland </p><p>LCLS-II & LCLS-II-HE </p><p>USA <br>Switzerland </p><p>PAL XFEL </p><p>S. Korea </p><p>SACLA </p><p>Japan </p><p>SDUV-SXFEL </p><p>SHINE </p><p>China </p><p>Blue=VUV to Soft X-ray </p><p>Purple=Soft to Hard X-ray </p><p>4</p><p><strong>Sub-systems of an RF Linac Driven X-ray FEL </strong></p><p>An RF-linac driven XFEL has the following sub-systems in order to produce </p><p>Low-emittance </p><p>• <strong>PHOTOINJECTOR </strong>to generate low-emittance electrons in ps bunches </p><p>electron beams </p><p>• <strong>RF LINAC </strong>to accelerate the electron beams to GeV energy • <strong>BUNCH COMPRESSORS </strong>to shorten the bunches and produce kA current </p><p>High peak current </p><p>• <strong>LASER HEATER </strong>to reduce the microbunching instabilities </p><p>• <strong>BEAM OPTICS </strong>to transport the electron beams to the undulators </p><p>Single-pass, high- </p><p>• <strong>UNDULATORS </strong>to generate and amplify the radiation in a single pass </p><p>gain X-ray FEL </p><p>• <strong>DIAGNOSTICS </strong>to characterize the electron & FEL beams </p><p>Laser </p><ul style="display: flex;"><li style="flex:1">Photoinjector heater </li><li style="flex:1">BC2 </li></ul><p>L2 </p><p>L3 <br>Undulators <br>Optics <br>L1 <br>L0 <br>X-rays </p><p>electrons </p><p>5</p><p>Layout of the sub-systems of the LCLS first X-ray FEL </p><p><strong>Linac Coherent Light Source </strong></p><p><strong>LCLS-II </strong><br><strong>LCLS-II-HE </strong></p><p><strong>Photoinjector </strong></p><p><strong>The last 1 km of the SLAC linac </strong></p><p><strong>accelerates electrons up to 15 GeV </strong></p><p><strong>Starting at Sector 20, electron bunches are injected at 135 MeV </strong></p><p><strong>Linac-to-Undulator Transport (340m) </strong></p><p><strong>140-m long undulator hall with 2 side-by-side undulators, Hard X-ray (HXR) and Soft X-ray (SXR) </strong></p><p><strong>Near Experimental Hall </strong></p><p><strong>Far Experimental Hall </strong></p><p>6</p><p><strong>RF-linac Driven FEL Pulse Format </strong></p><p><strong>Low-repetition-rate Mode (e.g., LCLS CuRF) </strong></p><p>~8 ms (1/120 Hz) <br>~10 fs </p><p><strong>Burst Mode (e.g., Eu-XFEL) </strong></p><p></p><ul style="display: flex;"><li style="flex:1">~1 ms macropulse </li><li style="flex:1">~1 ms macropulse </li></ul><p>~100 ms (1/10 Hz) </p><p>~200ns </p><p>micropulses </p><p><strong>Continuous-Wave Mode (e.g., LCLS-II/HE, SHINE) </strong></p><p>~1 ms (1/MHz) </p><p>7</p><p><strong>LCLS-II-HE Soft X-ray Undulator </strong></p><p><strong>Planar Undulators </strong></p><p><strong>strongback </strong></p><p><strong>magnetic field electron beam </strong></p><p><strong>magnets </strong></p><p><sub style="top: 0.31em;">푢 </sub></p><p><strong>X-ray polarization (same direction as electron oscillations) </strong></p><p>Undulator magnetic field varies sinusoidally with <em>z </em>and points in the <em>y </em>direction </p><p>ෝ</p><p><strong>B </strong>= 퐵<sub style="top: 0.41em;">0</sub>푠푖푛 푘<sub style="top: 0.41em;">푢</sub>푧 풚 </p><p>Planar undulators produce linearly (plane) polarized radiation at the fundamental frequency and also at harmonic frequencies. </p><p>8</p><p><strong>Helical Superconducting Undulators </strong></p><p>Superconducting coils are wound around </p><p>the electron beam pipe in a helical pattern. </p><p>Undulator magnetic field varies sinusoidally </p><p>with <em>z </em>and points in both <em>x </em>and <em>y </em>directions in a helical fashion. </p><p></p><ul style="display: flex;"><li style="flex:1">ෝ</li><li style="flex:1">ෝ</li></ul><p><strong>B </strong>= 퐵<sub style="top: 0.41em;">0 </sub>푐표푠 푘<sub style="top: 0.41em;">푢</sub>푧 풙 + 푠푖푛 푘<sub style="top: 0.41em;">푢</sub>푧 풚 <br>2휋 </p><p>Undulator wavenumber </p><p>푘<sub style="top: 0.41em;">푢 </sub>= </p><p><sub style="top: 0.41em;">푢 </sub></p><p>Helical undulators produce circularly </p><p>polarized radiation at the fundamental </p><p>frequency. Helical undulators do not produce undulator radiation at the harmonic frequencies. <br>Snapshots of the helical undulator magnetic field at different locations in one undulator period. </p><p>9</p><p><strong>Delta Undulators (Variable Polarization) </strong></p><p>Varying the linear positions of the magnet jaws changes radiation polarization from linear to circular </p><p>Delta undulator cross-section </p><p>10 </p><p><strong>X-ray FEL Wavelength for a Planar Undulator </strong></p><p><strong>Undulator period </strong><br><strong>FEL resonant wavelength </strong></p><p><sub style="top: 0.48em;">푢 </sub></p><p>2훾<sup style="top: -0.7em;">2 </sup></p><p>퐾<sup style="top: -0.85em;">2 </sup></p><p>2</p><p><strong>Undulator parameter </strong></p><p> = </p><p>1 + </p><p>ꢃ퐵<sub style="top: 0.4117em;">0 </sub></p><p>ꢃ<sub style="top: 0.41em;">푢</sub>퐵<sub style="top: 0.41em;">0 </sub></p><p><em>K </em>= </p><p>=</p><p><strong>Lorentz relativistic factor </strong></p><p><strong>(Dimensionless beam energy) </strong></p><p></p><ul style="display: flex;"><li style="flex:1">푘<sub style="top: 0.41em;">푢</sub>ꢂ<sub style="top: 0.41em;">푒</sub>푐 </li><li style="flex:1">2휋ꢂ<sub style="top: 0.41em;">푒</sub>푐 </li></ul><p></p><p>Dimensionless <em>K </em>parameter is a measure </p><p>of how much the electron beam is </p><p>deflected transversely in the undulator </p><p>퐸<sub style="top: 0.41em;">푡ꢁ푡푎푙 </sub></p><p>훾 = </p><p><em>K </em>= 0.934 퐵<sub style="top: 0.41em;">0</sub><sub style="top: 0.41em;">푢 </sub></p><p>ꢂ<sub style="top: 0.41em;">푒</sub>푐<sup style="top: -0.6em;">2 </sup></p><p>퐾</p><p>휃<sub style="top: 0.34em;">푚푎ꢀ </sub></p><p>=</p><p>푥</p><p>훾</p><p><em>B</em><sub style="top: 0.41em;">0 </sub>in tesla <sub style="top: 0.3342em;">푢</sub>in cm </p><p></p><p><sub style="top: 0.312em;"><em>u </em></sub>+ </p><p>radiation wave </p><p>휃<sub style="top: 0.31em;">푚푎ꢀ </sub></p><p>푧</p><p></p><p>e- trajectory </p><p><sub style="top: 0.37em;"><em>u </em></sub></p><p>11 </p><p><strong>Electron Beam Kinematics </strong></p><p><strong>Dimensionless electron beam energy </strong><br><strong>Electron velocity relative to the speed of light </strong></p><p>푣<br>훽 = <br>푐</p><p>퐸<sub style="top: 0.41em;">푡ꢁ푡푎푙 </sub></p><p>훾 = <br>ꢂ<sub style="top: 0.41em;">푒</sub>푐<sup style="top: -0.6em;">2 </sup></p><p>Using the g-b relation, we can calculate b </p><p>퐸<sub style="top: 0.41em;">푡ꢁ푡푎푙 </sub>= 퐸<sub style="top: 0.41em;">ꢄ </sub>+ ꢂ<sub style="top: 0.41em;">푒</sub>푐<sup style="top: -0.73em;">2 </sup></p><p>1</p><p>1</p><p>훾<sup style="top: -0.6em;">2 </sup></p><p>훾 = <br>훽 = 1 − <br>1 − 훽<sup style="top: -0.6em;">2 </sup></p><p>Rest mass energy <br>Kinetic energy <br>0.511 MeV </p><p>Approximate b for </p><p>GeV electrons </p><p>1</p><p><strong>Approximate g for GeV electrons </strong></p><p>훽 ≈ 1 − <br>2훾<sup style="top: -0.6em;">2 </sup></p><p>퐸<sub style="top: 0.4102em;">푡ꢁ푡푎푙 </sub>≈ 퐸<sub style="top: 0.4102em;">ꢄ </sub>= 퐸<sub style="top: 0.4102em;">푏 </sub></p><p>We shall see later the longitudinal component of the velocity, <em>ʋ</em><sub style="top: 0.41em;"><em>z </em></sub>is reduced when the electrons undergo transverse oscillations in the undulator. </p><p>훾 ≈ 1957 퐸<sub style="top: 0.37em;">푏 </sub>퐺ꢃ푉 </p><p>12 </p><p><strong>X-ray FEL Wavelength Tuning </strong></p><p>The <strong>FEL x-ray wavelength </strong>can be tuned by one of the following methods 1. varying the electron <strong>beam energy</strong>, <strong>E</strong><sub style="top: 0.41em;">b </sub>and thus the beam <strong>g </strong>2. varying the <strong>gap </strong>by moving the magnet jaws symmetrically in and out, thus changing the <strong>K </strong>value </p><p>2</p><p>The on-axis magnetic field amplitude depends </p><p>on the gap-to-period ratio. The remanence </p><p></p><ul style="display: flex;"><li style="flex:1">푔</li><li style="flex:1">푔</li></ul><p>퐵<sub style="top: 0.34em;">0 </sub>푔, <sub style="top: 0.34em;">푢 </sub>= 3.13퐵<sub style="top: 0.34em;">푟 </sub>ꢃ푥푝 −5.08 <br>+ 1.54 </p><p></p><ul style="display: flex;"><li style="flex:1"><sub style="top: 0.34em;">푢 </sub></li><li style="flex:1"><sub style="top: 0.34em;">푢 </sub></li></ul><p></p><p>퐵</p><p>magnetic field, of NdFeB is about 1.2 tesla. </p><p>푟</p><p>Larger gap – Smaller <em>K </em>– Shorter <br>Small gap – Large <em>K </em>– Long </p><p>gap </p><p>gap e- beam e- beam </p><p>magnets poles </p><p>13 </p><p>period </p><p><strong>LCLS-II-HE Variable-Gap Soft X-ray Undulator </strong></p><p>K</p><p>SXR <em>K </em>parameter vs gap (mm) </p><p>10 </p><p>This example illustrates how we change the LCLS X-ray FEL </p><p>9</p><p>wavelength by varying the magnet gap of the Soft X-ray (SXR) undulator which has an undulator period of 56 mm. </p><p>87</p><p>6</p><p>5</p><p><em>K</em></p><p>The undulator <em>K </em>parameter decreases and photon energy </p><p>4</p><p>increases as we increase the gap (right figures), using the LCLS-II-HE 8-GeV electron beams as an example. </p><p>321</p><p>However, opening the gap to increase the photon energy also reduces the FEL output pulse energy (below). </p><p>0</p><p>7.2 9.2 11.2 13.2 15P.2h1o7t.2o1n9.2en21e.2rg23y.2 25.2 27.2 29.2 31.2 <br>5000 </p><p>3.5 </p><p>4500 </p><p>Photon energy (eV) vs gap (mm) </p><p>3<br>2.5 <br>2</p><p>4000 </p><p>3500 3000 2500 2000 1500 1000 <br>500 </p><p>Photon energy (eV) <br>Output pulse energy (mJ) </p><p>1.5 </p><p>1</p><p>0.5 <br>0<br>0<br>7.2 9.2 11.2 13.2 15.2 17.2 19.2 21.2 23.2 25.2 27.2 29.2 31.2 </p><p>14 </p><p>Photon energy (eV) gap (mm) </p><p><strong>Properties of Electromagnetic Radiation </strong></p><p>15 </p><p><strong>EM Radiation in Free Space </strong></p><p>ℎ = 4.1357 ∙ 10<sup style="top: -0.61em;">−15 </sup>ꢃV ∙ 푠 </p><p>푐 = 2.9979 ∙ 10<sup style="top: -0.61em;">8 </sup>ꢂ/푠 </p><p></p><ul style="display: flex;"><li style="flex:1">Low frequency </li><li style="flex:1">Long wavelength </li></ul><p></p><p>= 1.23984 ∙ 10<sup style="top: -0.61em;">−6</sup>ꢃV−<em>m </em><br> ∙ ℎ휈 = ℎ푐 <br>1239.84 ꢃ푉 ℎ휈 = </p><p>Photon energy </p><p>λ 푛ꢂ </p><p>푥</p><p>푐</p><p>푦<br>푧</p><p></p><ul style="display: flex;"><li style="flex:1">High frequency </li><li style="flex:1">Short wavelength </li></ul><p></p><p>16 </p><p><strong>Accelerated charged particles emit EM radiation </strong></p><p><strong>Radiation from circular motions </strong></p><p>Bremsstrahlung Synchrotron radiation </p><p><strong>Radiation from oscillatory motions </strong></p><p>17 </p><p><strong>Generations of Beam-based Radiation Sources </strong></p><p>• <strong>X-ray Tubes </strong></p><p>– X-ray tubes emit <strong>Bremsstrahlung </strong>and <strong>characteristic peaks </strong></p><p>– Characteristic peaks are narrow-line atomic transitions </p><p>• <strong>Synchrotron Radiation (1</strong><sup style="top: -0.38em;"><strong>st </strong></sup><strong>and 2</strong><sup style="top: -0.38em;"><strong>nd </strong></sup><strong>Generation Light Sources) </strong></p><p>– Electrons going around bends produce <strong>synchrotron radiation </strong></p><p>– <strong>First generation SR </strong>operated as parasitic radiation devices </p><p>– <strong>Second generation SR </strong>are dedicated to radiation production </p><p>• <strong>Synchrotron Radiation (3</strong><sup style="top: -0.38em;"><strong>rd </strong></sup><strong>Generation Light Sources) </strong></p><p>– <strong>3</strong><sup style="top: -0.38em;"><strong>rd </strong></sup><strong>Gen SR </strong>have low-emittance lattice with straight sections </p><p>– <strong>Bending magnet </strong>and <strong>wiggler radiation </strong>is broadband – <strong>Undulator radiation </strong>has narrow spectral lines </p><p>• <strong>X-ray Free-Electron Lasers (4</strong><sup style="top: -0.38em;"><strong>th </strong></sup><strong>Generation Light Sources) </strong></p><p>– <strong>XFEL </strong>produce coherent, tunable, narrow-band x-rays – X-ray pulses are typically a few femtoseconds long – <strong>FEL peak brilliance </strong>is typically 10 orders of magnitude brighter </p><p>than <strong>third-generation SR. </strong></p><p>18 </p><p><strong>Electric Field of a Gaussian Wave-Packet </strong></p><p>2</p><p><strong>Complex electric </strong></p><p><strong>field of a Gaussian </strong></p><p><strong>wave-packet </strong></p><p>ꢈ−ꢈ </p><p>0</p><p>−</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">퐸(푧, ꢅ) = 퐸<sub style="top: 0.48em;">0</sub>ꢃ<sup style="top: -0.85em;">ꢆ ꢄꢇ−휔푡+휓 </sup></li><li style="flex:1">ꢃ</li></ul><p></p><p>+ c.c. </p><p>2휎 <br>ꢈ</p><p>Phase <br>Amplitude </p><p>Gaussian envelope rms temporal width <br>Wavenumber </p><p>Angular frequency </p><p>2휋 <br>푘 = </p><p></p><p>2휋푐 <br>ꢉ = </p><p><strong>Radiation intensity </strong></p><p></p><p>1</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">퐼 = </li><li style="flex:1">퐸 푧, ꢅ </li></ul><p>2푍<sub style="top: 0.4117em;">0 </sub></p><p>Normalized </p><p>intensity envelope </p><p>Fast carrier waves at w </p><p>1</p><p>2</p><p>퐼<sub style="top: 0.41em;">0 </sub>= </p><p>퐸<sub style="top: 0.41em;">0 </sub></p><p>2푍<sub style="top: 0.412em;">0 </sub></p><p>Gaussian envelope </p><p>Impedance of free space = 120p </p><p>19 </p><p><strong>Fourier Transform a Gaussian Pulse </strong></p><p>2</p><p>Consider only the time-dependent part of a </p><p>푡</p><p>−</p><p>퐸<sub style="top: 0.34em;">0 </sub></p><p>න ꢃ<sup style="top: -0.73em;">−ꢆ 휔−휔 푡 </sup></p><p></p><ul style="display: flex;"><li style="flex:1">ꢃ</li><li style="flex:1"><sup style="top: -1.21em;">2 </sup>푑ꢅ </li></ul><p></p><p>Gaussian wave-packet. Its Fourier Transform </p><p>2ꢋ </p><p>ꢊ</p><p>ℰ(ꢉ) = </p><p>ꢈ</p><p>2휋 <br>ꢉ</p><p>is a Gaussian spectrum centered at ± </p><p>푟</p><p>2<br>2</p><p>휔−휔 <br>푡</p><p>ꢊ</p><p>ꢃ<sup style="top: -1.58em;">− </sup></p><p>−</p><p>퐸<sub style="top: 0.34em;">0 </sub></p><p>2<br>2</p><p>2ꢋ </p><p></p><ul style="display: flex;"><li style="flex:1">퐸(ꢅ) = 퐸<sub style="top: 0.41em;">0</sub>ꢃ<sup style="top: -0.73em;">−ꢆ휔 푡 </sup></li><li style="flex:1">ꢃ</li></ul><p></p><p>2ꢋ </p><p></p><ul style="display: flex;"><li style="flex:1">ꢍ</li><li style="flex:1">ꢊ</li></ul><p></p><p>ℰ(ꢉ) = </p><p>ꢈ</p><p>2ꢌ<sub style="top: 0.34em;">휔 </sub></p><p>Fourier Transform limit </p><p>of time-bandwidth </p><p>2ꢌ<sub style="top: 0.34em;">푡 </sub></p><p>product (rms widths) </p><p>2</p><p>ℰ ꢉ </p><p>ꢌ<sub style="top: 0.41em;">휔</sub>ꢌ<sub style="top: 0.41em;">푡 </sub>= ½ </p><p>2ꢌ<sub style="top: 0.27em;">휔 </sub></p><p>In general, TBW is </p><p>larger than 1/2 </p><p>ꢉ<sub style="top: 0.24em;">푟 </sub></p><p>Time domain </p><p>Frequency domain </p><p>20 </p><p><strong>Radiation Pulse & Time-Bandwidth Product </strong></p><p>Linear frequency <br>Full-width-at-half-maximum (FWHM) in <br>FWHM </p><p>ꢉ</p><ul style="display: flex;"><li style="flex:1">훿ꢅ </li><li style="flex:1">훿휈 </li></ul><p></p><p>time and linear frequency domain </p><p>휈 = </p><p>2휋 </p><p>• Time-bandwidth product for a Gaussian pulse </p><p>2</p><p>퐸 ꢅ </p><p>dꢅ </p><p>4ꢎ푛2 </p><p></p><ul style="display: flex;"><li style="flex:1">훿휈 ∙ 훿ꢅ = </li><li style="flex:1">ꢌ<sub style="top: 0.34em;">휔</sub>ꢌ<sub style="top: 0.34em;">푡 </sub>= 0.44 </li></ul><p>훿ꢅ = 2 2ꢎ푛2 ꢌ<sub style="top: 0.34em;">푡 </sub></p><p>휋</p><p>• Multiply both sides by the Planck’s constant in <em>e</em>V-s </p><p></p><ul style="display: flex;"><li style="flex:1">-4.0 </li><li style="flex:1">-3.0 </li><li style="flex:1">-2.0 </li><li style="flex:1">-1.0 </li><li style="flex:1">0.0 </li><li style="flex:1">1.0 </li><li style="flex:1">2.0 </li><li style="flex:1">3.0 </li><li style="flex:1">4.0 </li></ul><p></p><p>ꢅ − ꢅ<sub style="top: 0.24em;">0 </sub></p><p>ℎ = 4.136 ∙ 10<sup style="top: -0.61em;">−15 </sup>ꢃV-s </p><p>ꢌ<sub style="top: 0.34em;">휔 </sub></p><p>2휋 <br>훿휈 = 2 2ꢎ푛2 ℎ훿휈 ∙ 훿ꢅ = 1.82 ꢃ푉 ∙ 푓푠 </p><p>훿휈 </p><p><strong>Energy (eV) – time FWHM product </strong></p><p>2</p><p>ℰ 휈 </p><p>훿휀 ∙ 훿ꢅ ≥ 1.82 ꢃ푉 ∙ 푓푠 </p><p></p><ul style="display: flex;"><li style="flex:1">-4.0 </li><li style="flex:1">-3.0 </li><li style="flex:1">-2.0 </li><li style="flex:1">-1.0 </li><li style="flex:1">0.0 </li><li style="flex:1">1.0 </li><li style="flex:1">2.0 </li><li style="flex:1">3.0 </li><li style="flex:1">4.0 </li></ul><p></p><p>휈 − 휈<sub style="top: 0.24em;">푟 </sub></p><p>21 </p><p><strong>Wave Equation & Helmholtz Equation </strong></p><p>1 휕<sup style="top: -0.73em;">2 </sup></p><p>푐<sup style="top: -0.6em;">2 </sup>휕ꢅ<sup style="top: -0.6em;">2 </sup></p><p>• Wave equation </p><p><sup style="top: -0.73em;">2 </sup>− </p><p>ꢏ 풓, ꢅ = 0 </p><p>ꢏ 풓, ꢅ = Re 풓 ꢃ<sup style="top: -0.73em;">−ꢆ휔 푡 </sup></p><p>ꢊ</p><p>• Solution to the wave equation </p><p>Time-independent wave amplitude <br>Time-dependent oscillatory term </p><p>• Helmholtz equation for the time-independent wave amplitude </p><p><sup style="top: -0.7317em;">2 </sup>+ 푘<sup style="top: -0.7317em;">2 </sup> 풓 = 0 <br> 풓 = 퐴 풓 ꢃ<sup style="top: -0.732em;">ꢆ풌·풓 </sup></p><p>22 </p><p><strong>Paraxial Approximation </strong></p><p>Paraxial wave equation for a wave </p><p>휕</p><p><sup style="top: -0.76em;">ꢒ</sup><sub style="top: 0.45em;">푇 </sub>− 2푖푘 퐴 푥, 푦, 푧 = 0 </p><p>propagating in the <em>z </em>direction </p><p>휕푧 </p><p>Gaussian beam transverse amplitude (beam propagating in the <em>z </em>direction) </p><p><sub style="top: 0.41em;"><em>T </em></sub>denotes transverse spreading due to optical diffraction </p><p></p><ul style="display: flex;"><li style="flex:1">휕<sup style="top: -0.73em;">ꢒ </sup></li><li style="flex:1">휕<sup style="top: -0.73em;">ꢒ </sup></li></ul><p></p><p><sup style="top: -0.76em;">ꢒ</sup><sub style="top: 0.45em;">푇 </sub>= </p><p>+</p><p>휕푥<sup style="top: -0.6025em;">ꢒ </sup>휕푦<sup style="top: -0.6025em;">ꢒ </sup>and 푘 = 푘<sub style="top: 0.42em;">ꢀ</sub><sup style="top: -0.75em;">ꢒ </sup>+ 푘<sub style="top: 0.42em;">ꢐ</sub><sup style="top: -0.75em;">ꢒ </sup>+ 푘<sub style="top: 0.41em;">ꢇ</sub><sup style="top: -0.6em;">ꢒ </sup></p><p>푘<sub style="top: 0.41em;">ꢀ</sub><sup style="top: -0.73em;">ꢒ </sup>+ 푘<sub style="top: 0.41em;">ꢐ</sub><sup style="top: -0.73em;">ꢒ </sup>≪ 푘<sub style="top: 0.41em;">ꢇ</sub><sup style="top: -0.73em;">ꢒ </sup></p><p>Paraxial approximation </p><p>푦</p><p>푘 = 푘 </p><p>For axisymmetric Gaussian beams, </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢐ</li></ul><p></p><p>2<br>2</p><p></p><ul style="display: flex;"><li style="flex:1">푟</li><li style="flex:1">푟</li></ul><p></p><p>ꢃ<sup style="top: -1.15em;">− </sup></p><p>ꢃ<sup style="top: -0.61em;">ꢆ ꢄꢇ−휔푡+휓 ꢇ </sup>ꢃ<sup style="top: -1.09em;">ꢆ ꢄ </sup></p><p>ꢑ</p><p>0</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">ꢑ ꢇ </li><li style="flex:1">ꢒ푅 ꢇ </li></ul><p></p><p>퐸(ꢓ, 푧) = 퐸<sub style="top: 0.41em;">0 </sub></p><p>ꢑ ꢇ </p><p>푥</p><p>Gouy phase shift </p><p>푤<sub style="top: 0.34em;">0 </sub>is the radius where the field </p><p>Radius of curvature of the Gaussian beam wavefront </p><p>decays to 1/e of <em>E</em><sub style="top: 0.41em;">0 </sub>at the beam waist </p><p>푤 푧 is the 1/e radius at location <em>z </em></p><p>23 </p><p><strong>Gaussian Beam Intensity & Diffraction </strong></p><p>퐼<sub style="top: 0.27em;">0 </sub></p><p>1</p><p>• Optical intensity </p><p>ꢒ</p><p></p><ul style="display: flex;"><li style="flex:1">퐼 ꢓ, 푧 = </li><li style="flex:1">퐸 ꢓ, 푧 </li></ul><p>2푍<sub style="top: 0.41em;">0 </sub></p><p>퐼 ꢓ </p><p>2</p><p>ꢒ푟 <br>ꢑ<br>ꢒ</p><p>• Gaussian beam </p><p>ꢃ<sup style="top: -1.13em;">− </sup></p><p>ꢑ</p><p>0<br>2</p><p>퐼(ꢓ, 푧) = 퐼<sub style="top: 0.41em;">0 </sub></p><p>푤<sub style="top: 0.27em;">0 </sub><br>퐼<sub style="top: 0.27em;">0 </sub></p><p>ꢑ</p><p>ꢃ<sup style="top: -0.4em;">ꢒ </sup></p><p>푧<sup style="top: -0.5em;">ꢒ </sup>푧<sub style="top: 0.45em;">R</sub><sup style="top: -0.62em;">ꢒ </sup></p><p></p><ul style="display: flex;"><li style="flex:1">-4.0 </li><li style="flex:1">-3.0 </li><li style="flex:1">-2.0 </li><li style="flex:1">-1.0 </li><li style="flex:1">0.0 </li><li style="flex:1">1.0 </li><li style="flex:1">2.0 </li><li style="flex:1">3.0 </li><li style="flex:1">4.0 </li></ul><p></p><p>푤 = 푤<sub style="top: 0.34em;">0 </sub>1 + </p><p>Beam profile at beam waist </p><p>• Gaussian beam diffracting from the beam waist </p><p>Far-field divergence half-angle </p><p>푤<sub style="top: 0.41em;">0 </sub></p><p>휆<br>휃 = = </p><p>푧<sub style="top: 0.41em;">푅 </sub>휋푤<sub style="top: 0.41em;">0 </sub></p><p>휆<br>휃푤<sub style="top: 0.41em;">0 </sub>= <br>휋</p><p>푧<sub style="top: 0.31em;">푅 </sub></p><p>24 </p><p><strong>Radiation Beam FWHM, Radius and Emittance </strong></p><p>Gaussian beam radial FWHM </p><p>퐼<sub style="top: 0.27em;">0 </sub></p><p>( 푤<sub style="top: 0.3117em;">0 </sub>= 1/e<sup style="top: -0.45em;">2 </sup>radius) </p><p>훿ꢓ<sub style="top: 0.34em;">퐹푊퐻푀 </sub>= 2ꢎ푛2 푤<sub style="top: 0.34em;">0 </sub></p><p>Gaussian beam angular divergence FWHM </p><p>ꢌ<sub style="top: 0.27em;">푟 </sub></p><p>ꢌ<sub style="top: 0.35em;">푟</sub><sup style="top: -0.01em;">′ </sup></p><p>rms 퐼 = .606퐼<sub style="top: 0.31em;">0 </sub></p><p>(휃 = 1/e<sup style="top: -0.45em;">2 </sup>half-angle) </p><p>퐼 ꢓ </p><p>훿ꢓꢔ<sub style="top: 0.34em;">퐹푊퐻푀 </sub>= 2ꢎ푛2 휃 </p><p>FHWM </p><p>퐼 ꢓ<sup style="top: -0.55em;">′ </sup></p><p>푤<sub style="top: 0.37em;">0 </sub></p><p>ꢌ<sub style="top: 0.37em;">푟 </sub>= </p><p>rms beam radius </p><p>1</p><p>ꢃ<sup style="top: -0.4em;">ꢒ </sup></p><p>2</p><p>푤<sub style="top: 0.27em;">0 </sub></p><p>휃<br>퐼 = .135퐼<sub style="top: 0.27em;">0 </sub></p><p>휃</p><p>2</p><p>rms angular divergence ꢌ<sub style="top: 0.4783em;">푟</sub><sup style="top: -0.02em;">′ </sup>= </p><p></p><ul style="display: flex;"><li style="flex:1">-4.0 </li><li style="flex:1">-3.0 </li><li style="flex:1">-2.0 </li><li style="flex:1">-1.0 </li><li style="flex:1">0.0 </li><li style="flex:1">1.0 </li><li style="flex:1">2.0 </li><li style="flex:1">3.0 </li><li style="flex:1">4.0 </li></ul><p></p><p>휖<sub style="top: 0.37em;">푟 </sub>= ꢌ<sub style="top: 0.37em;">푟</sub>ꢌ<sub style="top: 0.37em;">푟</sub><sup style="top: -0.67em;">′ </sup></p><p>Radial dimension (or angle) </p><p>Gaussian beam emittance </p><p>Photon beam emittance for </p><p>transversely incoherent (not </p><p>diffraction limited) radiation </p><p>휆<br>휆</p><p>ꢕ<sup style="top: -0.61em;">ꢒ </sup>> 1 </p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages69 Page
-
File Size-